Подключение асинхронного электродвигателя своими силами показать. Способы запуска трехфазных асинхронных двигателей

Схемы включения асинхронных двигателей

Простые способы включения трехфазных двигателей в однофазную сеть

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 - 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на
звезду» - для 380 В или на «треугольник» - на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в
каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
- обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» - понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» - обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется
6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.
можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не
корректными по следующим причинам:
1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке.
2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.

Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б
или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C
мкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты
от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому
подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и
Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,
затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от
нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что
относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной
кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей
мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой
переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя,
между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не
отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует
контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-
графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,
если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле
более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле
отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры
оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в
однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.

Практические схемы включения


Обобщающая схема включения
С1- пусковой, С2- рабочий, К1- нефиксирующаяся кнопка, диод и резистор- система торможения

Работает схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение
1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому
переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
быть меньше сопротивления обмотки двигателя.

Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть
двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения. Если время работы двигателя между пуском и торможением превышает 1
минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от
фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение
постоянным током. Используется обычный переключатель на два положения.



Схема реверсивного включения и торможения
Эта схема развитие предыдущей, здесь автоматически происходит запуск при помощи
токового реле и торможение электролитическим конденсатором, а также реверсивное включение.
Отличие этой схемы: сдвоеный трехпозиционный переключатель и пусковое реле. Выкидывая из
этой схемы лишние элементы, каждый из которых имеет свой цвет, можно собрать схему нужную
для конкретных целей. При желании можно перейти на кнопочное включение, для этого понадобятся один или два автоматических пускателя с катушкой на 220В Используется сдвоеный
переключатель на три положения.

Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко
выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого
при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на
номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора
и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 - 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и
мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение
по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.

Использование электролитических конденсаторов в качестве пусковых и рабочих

Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не
дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком
случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать
батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости
может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,
особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 - 248. При пробое диода сгорает (
взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,
теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,
конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно
расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
пусковыми так и рабочими.

Включение пускового конденсатора при помощи реле тока.

Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего
двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, - при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины
типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или
угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не
наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
40-45 витков.


Для более мощных двигателей следует изготовить реле тока по аналогии с РП-1, большего
размера.
Моточный провод реле должен соответствовать номинальному току двигателя, из расчёта
5А / 1мм?
Количество витков следует подобрать экспериментально, для чёткого включения реле при
запуске и отключения после запуска. Лучше намотать больше витков и отматывать до достижения
четкого отключения после пуска.



однофазную сеть



Переделка двигателя заключается в изменении якоря двигателя.



1- медные стержни из проволоки Ф2-2,5мм запрессованы в чуть меньшие отверстия
или на клею провода к ним просто припаяны 2-диск из графитовой щетки Ф на 1,5мм меньше Ф
корпуса, толщина 1,5-2мм 3- корпус 4- обмотка 5- якорек
Корпус реле можно изготовить из текстолита, гетинакса, эбонита и т. п. Стержень -
алюминиевая проволока, магнитный якорь - цилиндр из малоуглеродистой стали выточен в форме
стакана.
Чтобы понятнее была конструкция самодельного реле, можно разобрать реле РП-1 и
изготовить аналог, пропорционально увеличив детали. Примерный размер корпуса Ф30мм h 60мм.
Якорек и контактный диск должны свободно перемещаться по стержню. Пружина не должна быть
слишком сильной.

Включение и реверсирование трёхфазного асинхронного двигателя (380/220) в
однофазную сеть одним переключателем

Множество представленных в Интернете схем реверсирования необоснованно усложнены и
имеют неоправданно большое количество переключателей.
Предлагается простая схема включения и реверсирования одним переключателем.
Подойдёт практически любой переключатель имеющий 3 фиксированных положения,
соответствующий мощности двигателя.
При необходимости – данная схема облегчает автоматизацию включения – выключения и
реверсирования двигателя.
При необходимости пускового конденсатора (включение нагруженного или
высокооборотистого двигателя), его можно подключать при помощи пусковой кнопки или реле тока.


Изменение оборотов трёхфазного асинхронного двигателя (380/220) включённого в
однофазную сеть
Чтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующих
изменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в
фазовый провод реостат или простейший регулятор мощности.


По образцу якоря, установленного в двигателе изготавливается «массивный якорь» из
магнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Из
старого якоря можно выпрессовать вал и насадить на него массивный якорь.

Я собираюсь использовать схему с использованием реле тока, для отключения пускового конденсатора.

Для асинхронного двигателя мы уже освоили, поэтому осталось только соединить разработанные узлы в одну принципиальную схему. 1 и 2 выводы схемы управления сажаем на фазы С1 и С3, а электродвигатель — к выходу теплового реле, вот и вся схема подключения асинхронного двигателя через пускатель.

Посмотрите, если убрать блокировку пусковых кнопок контактами КМ1.1 и КМ2.1, при отпускании кнопок пускатели отключатся. Где-то такое может быть неудобно, а вот в считается обязательным.
В этой схеме маленькая недоработка: я описывал трехфазное подключение теплового реле, а на Рис. 3 задействованы только две его фазы. Страшного ничего нет, можно сделать и такое подключение теплового реле, зато получилась схема подключения асинхронного двигателя с применением двухфазного теплового реле.

пуск двигателя звезда треугольник

Когда-нибудь замечали, как ? Так и при запуске мощного электродвигателя напряжение в сети падает из-за большого пускового тока. Чтобы пусковой ток снизить, придумали поэтапный пуск двигателя звезда треугольник (треугольник рассчитан на 380V). На каждой фазе статора своя обмотка, у которой есть начало и конец, и они выведены в клеммную коробку.



Значение начала и конца важно: например, при соединении обмоток в треугольник конец первой обмотки соединяется с началом второй, конец второй — с началом третьей, и конец третьей — с началом первой. По-другому двигатель не потянет. В коробке переключение со звезды на треугольник производится перемычками с4-с5-с6 на с1-с4, с2-с5, с3-с6. Но при запуске не открывать же коробку и переставлять перемычки, для этого и придумали пуск с помощью двух контакторов КМ2 и КМ3, заменяющих эти пластинки.



Как это сделать? Прежде всего убрать перемычки, затем подключить все выводы обмоток к контакторам КМ1, КМ2 и КМ3 согласно схеме (Рис. 4).
Как работает такая схема? При нажатии пусковой кнопки SB2 включается главный контактор КМ1, который запускает своим контактом КМ1.2 реле времени КТ и блокирует контактом КМ1.1 пусковую кнопку. Одновременно включается контактор КМ3, соединяющий обмотки статора в звезду, и размыкает своим контактом КМ3 цепь катушки КМ2 во избежание случайного ее включения. Пуск на звезде осуществлен.
После разгона отключается контакт реле времени КТ1.2, катушка контактора КМ3 обесточивается, контакт КМ3 возвращается в исходное положение. В это время замыкается контакт реле времени КТ1.1, включает катушку контактора КМ2, соединяющего обмотки в треугольник и страхующего катушку КМ3 от включения, размыкая свой контакт КМ2. Теперь двигатель начал работать на нужном нам треугольнике.
Очень важно настроить реле времени так, чтобы момент его срабатывания соответствовал полному разгону на звезде.
Примечание: схема управления подключена на 220V, то есть на фазу и на «ноль» N, схема подключения двигателя через пускатель в грузоподъемных механизмах должна работать только на 380V, 220V разрешено подключать через трансформатор 380/220V.
Проблему большого пускового тока эффективно решает подключение

Двигатели трехфазные

В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств. Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска. При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.

Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального. В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания. Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.

Прямой запуск

Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя.

Подключение двигателя в электрическую сеть происходит при помощи контактора (пускателя). Реле перегрузки необходимо для защиты двигателя в процессе эксплуатации от перегрузки по току. Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности. Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис. 1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.

Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска. При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным. В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.

Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.

Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых выведены начала и концы всех трех обмоток. Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей. Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)

Пуск звезда треугольник

В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆). При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя. В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза. Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.

Запуск «звезда – треугольник» также понижает и пусковой момент, приблизительно на треть. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник». Если переключение «звезда – треугольник» происходит при недостаточном разгоне, то это может вызвать сверхток, который достигает почти такого же значения, что и ток при «прямом» запуске. За время переключения из режима «звезда» в «треугольник» двигатель очень быстро теряет скорость вращения, для ее восстановления необходим мощный импульс тока. Скачок тока может стать ещё больше, так как на время переключения двигатель остается без сетевого напряжения.

Данный способ запуска осуществляется при помощи автотрансформатора, последовательно соединённого с электродвигателем во время запуска. Автотрансформатор понижает подаваемое на электродвигатель напряжение (приблизительно на 50–80% от номинального напряжения), чтобы произвести запуск при более низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как в случае с запуском «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать. На (Рис. 3) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором при помощи автотрансформатора.

Пуск через автотрансформатор тока

Помимо уменьшения пускового момента, способ запуска через автотрансформатор имеет и недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.

Плавный пуск

В устройстве «плавный пуск» используются те же IGBT транзисторы, что и в частотных преобразователях. Данные транзисторы через цепи управления, понижают начальное напряжение, поступающее на электродвигатель, что приводит к уменьшению пускового момента в электродвигателе. В процессе запуска «плавный пуск» постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого момента и пиков тока. На (Рис. 4) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором с помощью устройства «плавный пуск». Плавный запуск может использоваться также для управления торможением электродвигателя. Устройство «плавный пуск» дешевле преобразователя частоты. Использование устройства «плавного пуска» для асинхронных двигателей значительно увеличивают срок службы электродвигателя, а с ним и насоса находящегося на валу этого двигателя.

У «плавного пуска» существуют те же проблемы, что и у частотных преобразователей: они создают наводки (помехи) в систему электроснабжения. Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время запуска. При плавном запуске электродвигатель включается при пониженном напряжении, которое затем увеличивается до напряжения сетевого питания. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Время запуска и пусковой ток можно задавать.

Пуск двигателя с преобразователем частоты

Преобразователи частоты остаются все еще дорогими устройствами, и также как и плавный пуск, создают дополнительные помехи в сеть электропитания.

Заключение

Задача любого из способов запуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы запуска асинхронных двигателей, каждый их которых имеет свои плюсы и минусы. И в заключении приведена небольшая таблица, где в краткой форме указаны преимущества и недостатки наиболее распространённых способов запуска асинхронных электродвигателей.

Таблица 1

Способы запуска

Преимущества

Недостатки

Прямой запуск

Простой и экономичный. Безопасный запуск Самый большой пусковой момент Высокий пусковой ток

Запуск «звезда – треугольник»

Уменьшение пускового тока в три раза. Скачки тока при переключении «звезда – треугольник». Пониженный пусковой момент.

Запуск через автотрансформатор

Уменьшение пускового тока на U 2 . Скачки тока при переходе от пониженного напряжения к номинальному напряжению. Пониженный пусковой момент.

Плавный запуск

Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока на требуемую величину, обычно в 2-3 раза. Пониженный пусковой момент.

Запуск при помощи частотного преобразователя

Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока, обычно, до номинального. Напряжение питания на двигатель можно подавать постоянно. Пониженный пусковой момент. Высокая стоимость.

Спасибо за оказанное внимание.