Алгебраические методы обработки данных (курс лекций, Журавлёв Ю.И.). Алгебраический метод решения задач на построение

Если исходить из соотношений между искомыми и данными задачи, то условие задачи на построение может быть выражено аналитически.

Аналитическое выражение задачи на построение в виде уравнения, а его решения в виде корней этого уравнения помогают найти геометрическое решение, а также определить, с помощью каких инструментов оно может быть выполнено.

Решение задач алгебраическим методом сводится к построению:

  • среднего пропорционального двух данных отрезков х = 4аЬ
  • четвертого пропорционального к трем данным отрезкам, выра-

. „ Ъс

жаемого формулой х = -;

По алгебраической сумме данных отрезков x = a±b,x-a + b-c + d,

x = 3a±2b и т.д.; _

По формулам типа х = 1а + Ь.

Алгебраический метод решения геометрических задач на построение состоит в следующем:

  • 1) неизвестные величины, фигурирующие в условии задачи, обозначают буквами х, у, z и т.д.;
  • 2) составляют уравнения, связывающие эти неизвестные с данными в задаче величинами а, Ь, с, ...;
  • 3) решают составленные уравнения;
  • 4) исследуют полученные ответы;
  • 5) выполняют требуемое построение.

Прежде чем переходить к решению задач на построение алгебраическим методом, рассмотрим построения некоторых отрезков, заданных соотношениями между длинами других отрезков.

1. Иногда в геометрических задачах на построение отношение двух величин дается в виде а: b ; а 3: Ь 3 ; а 4: Ь 4 и т.д.

Покажем, что любое из этих отношений можно заменить отношением двух отрезков.

Задача 6.47. Построить отрезок, заданный отношением а п: Ь п, где

п е N.

Решение

Начертим две произвольные взаимно перпендикулярные прямые KL и MN (рис. 6.52) и обозначим буквой О точку их пересечения. На прямых KL и MN от точки О отложим отрезки ОА и ОА х, соответственно равные данным отрезкам Ъ и а. Соединив точки А и А ь восставим в точке А г перпендикуляр к АА Х KL в некоторой точке Л 2 . В точке А 2 восставим перпендикуляр к А 2 А 1 и продолжим его до пересечения с прямой MN в точке А 3 и т.д.

Определим величину каждого из следующих отношений: ОА х: ОА; ОА 2 : ОА х; ОА 3: ОА г и т.д.

Так как прямоугольные треугольники ОАА х, ОА,А 2 , ОА^А 3 ,... подобны, то, значит:

ОА, и ,

По построению, - L = -, а поэтому в силу равенств (*) получим ОА b

Определим величину отношения Оно не изменится, если мы

каждый из его членов разделим на одну и ту же величину ОА ь а поэтому

т т ОА, а О Ап а ОА 2 а ОА b

Но из равенств -- = - и -- = - усматриваем, что -- = - и-= -.

ОАЬОА х Ъ ОА, Ъ ОА, а

В силу последних двух равенств мы можем равенство (**) переписать так:

ОА 2 _ а 2 ОА ~ Ъ 2 "

Аналогичными рассуждениями найдем и другие отношения.

2. Рассмотрим задачу на построение среднего пропорционального двух данных отрезков, т.е. отрезка -Jab.

Задача 6.48. Построить среднее пропорциональное отрезков а и Ь. Решение

На одной прямой отложим последовательно отрезки АС = а и СВ = b (рис. 6.53)

Рис. 6.53

На отрезке АВ как на диаметре построим окружность ofiC, 1.

В точке С восставим перпендикуляр к прямой АВ.

Имеем NC = -Jab. Действительно, AANB - прямоугольный.

По известной теореме AACN подобен ANCB, а значит, откуда

NC 2 = АС СВ, или в других обозначениях NC 2 =ab. Окончательно имеем NC--Jab.

3. При решении задач на построение очень часто приходится строить отрезок, который является четвертым пропорциональным трех заданных отрезков. Рассмотрим решение этой задачи.

Задача 6.49. Даны три отрезка а, Ь, с. Построить такой отрезок х,

а с что - = -.

Решение

Возьмем любой угол О. На одной стороне угла отложим отрезки ОА = а и ОС = с, а на другой - отрезок ОВ-b (рис. 6.54)

Через точку С проведем прямую р || АВ. Она пересечет луч ОВ в точке D. Докажем, что OD - искомый отрезок х. Треугольники ОАВ

и OCD подобны. Поэтому т.е. OD = х.


Рис. 6.54

В частном случае эта задача позволяет разделить отрезок на п равных частей. Обозначим данный отрезок через Ь. Возьмем любой отрезок с, и пусть а - пс (рис. 6.55).


Рис. 6.55

„ ас b Ъ 1 .

Поскольку - = -, то х = - с = - с = - Ъ. ох а пс п

4. Рассмотрим более сложное отношение отрезков.

Задача 6.50. Построить отрезок, заданный отношением 2 [а: 2 /b, где п е N.

Решение

Допустим, что отношение величин задано в виде [а: -Jb , где а и Ъ - данные отрезки.

Для определения тех двух отрезков, отношение которых равно Va: Vb, поступим следующим образом.

На произвольной прямой от выбранной точки К отложим последовательно два отрезка: KN-а иNM = b (рис. 6.56)


Рис. 6.56

На отрезке КМ, как на диаметре, построим полуокружность КРМ.

В точке N восставим перпендикуляр NN" к отрезку КМ. Прямая NN" пересекает дугу КРМ в некоторой точке L.

Соединяем точку ЬсКиМ. Отрезки KL и LM - искомые, т.е.

Действительно, имеем-=--. Но AKLM подобен ALMN, а по-

KL LN KL 2 LN 2

этому-=-и, значит, -=--, но из последнего равенства

LM NM LM NM 2

KN LN 2 KL 2 KN

и равенства-=-- вытекает, что-- =-. Извлекая квадратный

NM NM 2 LM 2 NM

корень из обеих частей последнего равенства, найдем:

Чтобы получить два отрезка, отношение которых равно [а: yfb, необходимо сначала построить такие два отрезка тип, отношение кото-

рых определяется равенством - = -j=, а затем посредством такого же

построения найти отрезки р и q, которые определяются равенством р _ yfm Ч Vn

Аналогичными построениями можно найти отрезки, отношение которых равно 2 fa: 2 yх 2 + h h 2 , то из равенства (*) получим

Построение. 1. Строим отрезок у = yj{2h b) 2 -h a 2 (рис. 6.61).

Рис. 6.61

2. Строим х = ^^- (рис. 6.62).

Рис. 6.62

3. Наконец, строим искомый равнобедренный треугольник АВС по основанию АС =2хи высоте DB = h b (рис. 6.63).

Рис. 6.63

Доказательство. Нужно доказать, что в построенном равнобедренном треугольнике АВС высоты BD -h b и АЕ- h a . Первое равенство очевидно, а справедливость второго вытекает из обратимости всех формул, приведенных в анализе. _

Исследование. Замечаем, что отрезок у = yl(.2h b) 2 -h 2 можно построить лишь в том случае, если (2/i b) 2 -h a 2 >0, или 2h b >h a .

При этом условии можно построить отрезок х и, следовательно, искомый треугольник АВС. Так как два равнобедренных треугольника, имеющих равные основания и равные высоты, равны, то задача имеет единственное решение.

Замечание. Задача допускает более простое решение другим способом. Если через точку D провести прямую, параллельную высоте АЕ и пересекающую сторону ВС в точке F, то треугольник DFB можно построить по катету 0,5h a и гипотенузе h b , что приведет к построению искомого треугольника.

Задача 6.57. Через данную вне круга точку А провести такую секущую, которая разделилась бы этой окружностью в данном отношении.

Решение

Анализ. Допустим, что задача решена: секущая AL удовлетворяет условию задачи (рис. 6.64). Проведем из точки А секущую АС, проходящую через центр О данного круга. Так как точка А нам дана, то, значит, нам известны отрезки AD и АС. Обозначим буквой х длину отрезка АК. Если из точки А, находящейся вне круга, проведем секущие, то произведение всей секущей на ее внешнюю часть есть величина постоянная, а потому


Рис. 6.64

Из чертежа усматриваем, что AL = х + LK.

л шс.. пх

А так как по условию х: LK = m : п, т.е. ЬК = -, то, значит, AL = x + - -

= -(т + п ). т

Поэтому равенство (*) примет такой вид: х-(m + п) = AD ? АС, откуда

Построение. 1. Исходя из формулы (**) известным построением определим отрезок х.

  • 2. Из точки А делаем на данной окружности засечку К радиусом, равным найденному х.
  • 3. Соединив точки А и К и продолжив эту прямую, получим искомую секущую.

Заметим, что мы не привели рассуждения, которые имеют место к решению этой задачи на этапах доказательства и исследования (предоставляем читателю провести эти этапы самостоятельно).

Задача 6.58. Найти вне данного круга такую точку, чтобы касательная, проведенная из нее к этой окружности, была вдвое меньше секущей, проведенной из той же точки через центр.

Решение

Анализ (рис. 6.65). Обозначим буквой х расстояние до искомой точки от центра О окружности. Как известно, АВ 2 -DA ? АС (1), но DA = х - г (2), АС = х + г (3) и, значит, АВ 2 = (х - г) (х + г) = х 2 - г 2 и АВ = 1х 2 -г 2 (4).

Рис. 6.65

Так как по условию АС = 2АВ, то из формул (3) и (4) имеем х + г - = 21х 2 -г 2 , откуда х 2 + 2гх + г 2 = 4х 2 - 4г 2 , или Зх 2 - 2гх - 5г 2 = 0. Следовательно,

т.е. х а = - г и х 2 =-г.

В данной задаче х не может быть отрицательной величиной, а потому второй корень отбрасываем.

Построение. Продолжим один из диаметров (CD) данной окружности

и на нем отложим от точки D отрезок DA, равный -г (DA = АО - OD = 5 2 3

Г - г = -г (6)).

Точка А - искомая.

Доказательство. АС = х + г =-г + г, т.е. АС =-г (7).

.- /2 8 4 АС

Из формул (1), (6), (7) находим: AB = y/DA-AC = J-r--r=-r =

что подтверждает правильность сделанного построения (этап исследования предлагаем читателю провести самостоятельно).

1. Общие замечания к решению задач алгебраическим методом.

2. Задачи на движение.

3. Задачи на работу.

4. Задачи на смеси и проценты.

    Использование алгебраического метода для нахождения арифметического пути решения текстовых задач.

1. При решении задач алгебраическим методом искомые величины или другие величины, зная которые можно определить искомые, обозначают буквами (обычно х, у, z ). Все независимые между собой соотношения между данными и неизвестными величинами, которые либо непосредственно сформулированы в условии (в словесной форме), либо вытекают из смысла задачи (например, физические законы, которым подчиняются рассматриваемые величины), либо следуют из условия и некоторых рассуждений, записываются в виде равенства неравенств. В общем случае эти соотношения образуют некоторую смешанную систему. В частных случаях эта система может не содержать неравенств либо уравнений или она может состоять лишь из одного уравнения или неравенства.

Решение задач алгебраическим методом не подчиняется какой-либо единой, достаточно универсальной схеме. Поэтому всякое указание, относящееся ко всем задачам, носит самый общий характер. Задачи, которые возникают при решении практических и теоретических вопросов, имеют свои индивидуальные особенности. Поэтому их исследование и решение носят самый разнообразный характер.

Остановимся на решении задач, математическая модель которых задается уравнением с одним неизвестным.

Напомним, что деятельность по решению задачи состоит из четырех этапов. Работа на первом этапе (анализ содержания задачи) не зависит от выбранного метода решения и не имеет принципиальных отличий. На втором этапе (при поиске пути решения задачи и составлении плана ее решения) в случае применения алгебраического метода решения осуществляются: выбор основного соотношения для составления уравнения; выбор неизвестного и введение обозначения для него; выражение величин, входящих в основное соотношение, через неизвестное и данные. Третий этап (осуществление плана решения задачи) предполагает составление уравнения и его решение. Четвертый этап (проверка решения задачи) осуществляется стандартно.

Обычно при составлении уравнений с одним неизвестным х придерживаются следующих двух правил.

Правило I . Одна из данных величин выражается через неизвестное х и другие данные (то есть составляется уравнение, в котором одна часть содержит данную величину, а другая – ту же величину, выраженную посредством х и других данных величин).

Правило II . Для одной и той же величины составляются два алгебраических выражения, которые затем приравниваются друг к другу.

Внешне кажется, что первое правило проще второго.

В первом случае всегда требуется составить одно алгебраическое выражение, а во втором – два. Однако часто встречаются задачи, в которых удобнее составить два алгебраических выражения для одной и той же величины, чем выбрать уже известную и составить для нее одно выражение.

Процесс решения текстовых задач алгебраическим способом выполняется по следующему алгоритму:

1. Сначала выбирают соотношение, на основании которого будет составлено уравнение. Если задача содержит более двух соотношений, то за основу для составления уравнения надо взять то соотношение, которое устанавливает некоторую связь между всеми неизвестными.

    Затем выбирают неизвестное, которое обозначают соответствующей буквой.

    Все неизвестные величины, входящие в выбранное для составления уравнения соотношение, необходимо выразить через выбранное неизвестное, опираясь на остальные соотношения, входящие в задачу кроме основного.

4. Из указанных трех операций непосредственно вытекает составление уравнения как оформление словесной записи при помощи математических символов.

Центральное место среди перечисленных операций занимает выбор основного соотношения для составления уравнений. Рассмотренные примеры показывают, что выбор основного соотношения является определяющим при составлении уравнений, вносит логичную стройность в порою расплывчатый словесный текст задачи, дает уверенность в ориентации и предохраняет от беспорядочных действий для выражения всех входящих в задачу величин через данные и искомые.

Алгебраический метод решения задач имеет огромное практическое значение. С его помощью решают самые разнообразные задачи из области техники, сельского хозяйства, быта. Уже в средней школе уравнения применяются учащимися при изучении физики, химии, астрономии. Там, где арифметика оказывается бессильной или, в лучшем случае, требует крайне громоздких рассуждений, там алгебраический метод легко и быстро приводит к ответу. И даже в так называемых «типовых» арифметических задачах, сравнительно легко решаемых арифметическим путем, алгебраическое решение, как правило, является и более коротким, и более естественным.

Алгебраический метод решения задач позволяет легко показать, что некоторые задачи, отличающиеся друг от друга лишь фабулой, имеют не только одни и те же соотношения между данными и искомыми величинами, но и приводят к типичным рассуждениям, посредством которых устанавливаются эти соотношения. Такие задачи дают лишь различные конкретные интерпретации одного и того же математического рассуждения, одних и тех же соотношений, то есть имеют одну и ту же математическую модель.

2. К группе задач на движение относятся задачи, в которых говорится о трех величинах: пути (s ), скорости (v ) и времени (t ). Как правило, в них речь идет о равномерном прямолинейном движении, когда скорость постоянна по модулю и направлению. В этом случае все три величины связаны следующим соотношением: S = vt . Например, если скорость велосипедиста 12 км/ч, то за 1,5 ч. он проедет 12 км/ч  1,5 ч = 18 км. Встречаются задачи, в которых рассматривается равноускоренное прямолинейное движение, то есть движение с постоянным ускорением (а). Пройденный путь s в этом случае вычисляется по формуле: S = v 0 t + at 2 /2, где v 0 начальная скорость движения. Так, за 10 с падения с начальной скоростью 5 м/с и ускорением свободного падения 9,8 м 2 /с тело пролетит расстояние, равное 5 м/с  10с + 9,8 м 2 /с  10 2 с 2 /2 = 50 м + 490 м = 540 м.

Как уже отмечалось, в ходе решения текстовых задач и в первую очередь в задачах, связанных с движением, весьма полезно сделать иллюстративный чертеж (построить вспомогательную графическую модель задачи). Чертеж следует выполнить так, чтобы на нем была видна динамика движения со всеми встречами, остановками и поворотами. Грамотно составленный чертеж позволяет не только глубже понять содержание задачи, но и облегчает со­ставление уравнений и неравенств. Примеры таких чертежей бу­дут приведены ниже.

Обычно в задачах на движение принимаются следующие соглашения.

    Если специально не оговорено в задаче, то движение на отдельных участках считается равномерным (будь то движение по прямой или по окружности).

    Повороты движущихся тел считаются мгновенными, то есть происходят без затрат времени; скорость при этом также меняется мгновенно.

Данную группу задач, в свою очередь, можно разбить на задачи, в которых рассматриваются движения тел: 1) навстречу друг другу; 2) в одном направлении («вдогонку»); 3) в противоположных направлениях; 4) по замкнутой траектории; 5) по течению реки.

    Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 а ), то при движении тел навстречу друг другу время, через которое они встретятся, равно S /(v 1 + v 2).

2. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 б ), то при движении тел в одну сторону (v 1 > v 2) время, через которое первое тело догонит второе, равно S /(v 1 v 2).

3. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 в ), то, отправившись одновременно в противоположных направлениях, тела будут через время t находиться на расстоянии S 1 = S + (v 1 + v 2 ) t .

Рис. 16

4. Если тела движутся в одном направлении по замкнутой траектории длиной s со скоростями v 1 и v 2 , то время, через которое тела опять встретятся (одно тело догонит другое), отправившись одновременно из одной точки, находится по формуле t = S /(v 1 v 2) при условии, что v 1 > v 2 .

Это следует из того, что при одновременном старте по замкнутой траектории в одном направлении тело, скорость которого больше, начинает догонять тело, скорость которого меньше. В первый раз оно догоняет его, пройдя расстояние на S большее, чем другое тело. Если же оно обгоняет его во второй, в третий раз и так далее, это означает, что оно проходит расстояние на 2S , на 3S и так далее большее, чем другое тело.

Если тела движутся в разных направлениях по замкнутой траектории длиной S со скоростями v 1 и v 2 , то время, через которое они встретятся, отправившись одновременно из одной точки, находится по формуле t = v (v 1 + v 2). В этом случае сразу после начала движения возникает ситуация, когда тела начинают двигаться навстречу друг другу.

5. Если тело движется по течению реки, то его скорость относительно берега и слагается из скорости тела в стоячей воде v и скорости течения реки w : и = v + w . Если тело движется против течения реки, то его скорость и = v w . Например, если скорость катера v = 12 км/ч, а скорость течения реки w = 3 км/ч, то за 3 ч. по течению реки катер проплывет (12 км/ч + 3 км/ч)  3 ч. = 45 км, а против течения – (12 км/ч – 3 км/ч)  3 ч. = 27 км. Считают, что скорость предметов, имеющих нулевую скорость движения в стоячей воде (плот, бревно и т. п.), равна скорости течения реки.

Рассмотрим несколько примеров.

Пример .Из одного пункта в одном направлении через каждые 20 мин. выезжают автомобили. Второй автомобиль едет со скоростью 60 км/ч, а скорость первого на 50% больше скорости второго. Найдите скорость движения третьего автомобиля, если известно, что он обогнал первый автомобиль на 5,5 ч позже, чем второй.

Решение . Пусть х км/ч – скорость третьего автомобиля. Скорость первого автомобиля на 50% больше скорости второго, значит, она равна

При движении в одном направлении время встречи находится как отношение расстояния между объектами к разности их скоростей. Первый автомобиль за 40 мин. (2/3 ч) проедет 90  (2/3) = 60 км. Следовательно, третий его догонит (они встретятся) через 60/(х – 90) часов. Второй за 20 мин. (1/3 ч) проедет 60  (1/3) = 20 км. Значит, третий его догонит (они встретятся) через 20/(х – 60) ч. (рис. 17).

П
о условию задачи

Рис. 17

После несложных преобразований получим квадратное уравнение 11х 2 – 1730х + 63000 = 0, решив которое найдем

Проверка показывает, что второй корень не удовлетворяет условию задачи, так как в этом случае третий автомобиль не догонит другие автомобили. Ответ: скорость движения третьего автомобиля 100 км/ч.

Пример .Теплоход прошел по течению реки 96 км, вернулся обратно и некоторое время простоял под погрузкой, затратив на все 32 ч. Скорость течения реки равна 2 км/ч. Определите скорость теплохода в стоячей воде, если время погрузки составляет 37,5% от времени, затраченно­го на весь путь туда и обратно.

Решение . Пусть х км/ч – скорость теплохода в стоячей воде. Тогда (х + 2) км/ч – его скорость по течению; (х – 2) км/ч – против течения; 96/(х + 2) ч. – время движения по течению; 96/(х – 2) ч. – время движения против течения. Так как 37,5% от общего количества времени теплоход стоял под погрузкой, то чистое время движения равно 62,5%  32/100% = 20 (ч.). Следовательно, по условию задачи имеем уравнение:

Преобразовав его, получим: 24(х – 2 + х + 2) = 5(х + 2)(х – 2) => 5х 2 – 4х – 20 = 0. Решив квадратное уравнение, находим: х 1 = 10; х 2 = -0,4. Второй корень не удовлетворяет условию задачи.

Ответ: 10 км/ч – скорость движения теплохода в стоячей воде.

Пример . Автомобиль проехал путь из города А в город С через город В без остановок. Расстояние АВ, равное 120 км, он проехал с постоянной скоростью на 1 ч. быстрее, чем расстояние ВС, равное 90 км. Определите среднюю скорость движения автомобиля от города А до города С, если известно, что скорость на участке АВ на 30 км/ч больше скорости на участке ВС.

Решение . Пусть х км/ч – скорость автомобиля на участке ВС.

Тогда (х + 30) км/ч – скорость на участке АВ, 120/(х + 30) ч, 90/х ч – время, закоторое автомобиль проезжает путиАВ и ВС соответственно.

Следовательно, по условию задачи имеем уравнение:

.

Преобразуем его:

120х + 1(х + 30)х = 90(х + 30) => х 2 + 60х – 2700 = 0.

Решив квадратное уравнение, находим: х 1 = 30, х 2 = -90. Второй корень не удовлетворяет условию задачи. Значит, скорость на участке ВС равна 30 км/ч, на участке АВ – 60 км/ч. Отсюда следует, что расстояние АВ автомобиль проехал за 2 ч. (120 км: 60 км/ч = 2 ч.), а расстояние ВС – за 3 ч. (90 км: 30 км/ч = 3 ч.), поэтому все расстояние АС он проехал за 5 ч. (3 ч. + 2 ч. = 5 ч.). Тогда средняя скорость движения на участке АС, протяженность которого 210 км, равна 210 км: 5 ч. = 42 км/ч.

Ответ: 42 км/ч – средняя скорость движения автомобиля на участке АС.

    К группе задач на работу относятся задачи, в которых говорится о трех величинах: работе А , времени t , в течение которого производится работа, производительности Р – работе, произведенной в единицу времени. Эти три величины связаны уравнением А = Р t . К задачам на работу относят и задачи, связанные с наполнением и опорожнением резервуаров (сосудов, баков, бассейнов и т. п.) с помощью труб, насосов и других приспособлений. В качестве произведенной работы в этом случае рассматривают объем перекачанной воды.

Задачи на работу, вообще говоря, можно отнести к группе задач на движение, так как в задачах такого типа можно считать, что вся работа или полный объем резервуара играют роль расстояния, а производительности объектов, совершающих работу, аналогичны скоростям движения. Однако по фабуле эти задачи естественным образом различаются, причем часть задач на работу имеют свои специфические приемы решения. Так, в тех задачах, в которых объем выполняемой работы не задан, вся работа принимается за единицу.

Пример. Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно?

Решение . Пусть первая бригада выполняет задание за х дней, вторая бригада – за y дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, a 1/y второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение 12(1/х + 1/у ) = 1.

Из второго условия следует, что вторая бригада работала 15 дней, а первая – только 8 дней. Значит, второе уравнение имеет вид:

8/х + 15/у = 1.

Таким образом, имеем систему:

Вычтем из второго уравнения первое, получим:

21/y = 1 => у = 21.

Тогда 12/х + 12/21 = 1 => 12/ х – = 3/7 => х = 28.

Ответ: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

Пример . Рабочий А и рабочий В могут выполнить работу за 12 дней, рабочий А и рабочий С – за 9 дней, рабочий В и рабочий С – за 12 дней. За сколько дней они выполнят работу, работая втроем?

Решение . Пусть рабочий А может выполнить работу за х дней, рабочий В – за у дней, рабочий С – за z дней. Примем всю работу за единицу. Тогда 1/х, 1/ y и 1/z производительности рабочих А, В и С соответственно. Используя условие задачи, приходим к следующей системе уравнений, представленной в таблице.

Таблица 1

Преобразовав уравнения, имеем систему из трех уравнений с тремя неизвестными:

Сложив почленно уравнения системы, получим:

или

Сумма это совместная производительность рабочих, поэтому время, за которое они выполнят всю работу, будет равно

Ответ: 7,2 дня.

Пример . В бассейн проведены две трубы – подающая и отводя­щая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн и за сколько часов через одну вторую трубу может осушиться полный бассейн?

Решение . Пусть V м 3 – объем бассейна, х м 3 /ч – производительность подающей трубы, у м 3 /ч – отводящей. Тогда V / x ч. – время, необходимое подающей трубе для заполнения бассейна, V / y ч. – время, необходимое отводящей трубе на осушение бассейна. По условию задачи V / x V / y = 2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V /3)/(y x ), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V / x и V / y . Выделим в уравнениях комбинацию неизвестных V / x и V / y , записав систему в виде:

Вводя новые неизвестные V / x = а и V / y = b , получаем следующую систему:

Подставляя во второе уравнение выражение а = b + 2, имеем уравнение относительно b :

решив которое найдем b 1 = 6, b 2 = -8. Условию задачи удовлетворяет первый корень 6, = 6 (ч.). Из первого уравнения последней системы находим а = 8 (ч), то есть первая труба наполняет бассейн за 8 ч.

Ответ: через первую трубу бассейн наполнится через 8 ч., через вторую трубу бассейн осушится через 6 ч.

Пример . Одна тракторная бригада должна вспахать 240 га, а другая на 35% больше, чем первая. Первая бригада, вспахивая ежедневно на 3 га меньше второй, закончила работу на 2 дня раньше, чем вторая бригада. Сколько гектаров вспахивала каждая бригада ежедневно?

Решение . Найдем 35 % от 240 га: 240 га  35 % /100 % = 84 га.

Следовательно, вторая бригада должна была вспахать 240 га + 84 га = 324 га. Пусть первая бригада вспахивала ежедневно х га. Тогда вторая бригада вспахивала ежедневно (х + 3) га; 240/х – время работы первой бригады; 324/(х + 3) – время работы второй бригады. По условию задачи первая бригада закончила работу на 2 дня раньше, чем вторая, поэтому имеем уравнение

которое после преобразований можно записать так:

324х – 240х – 720 = 2х 2 + => 2х 2 – 78х + 720 = 0 => х 2 – 39х + 360 = 0.

Решив квадратное уравнение, находим х 1 = 24, х 2 = 15. Это норма первой бригады.

Следовательно, вторая бригада вспахивала в день 27 га и 18 га соответственно. Оба решения удовлетворяют условию задачи.

Ответ: 24 га в день вспахивала первая бригада, 27 га – вторая; 15 га в день вспахивала первая бригада, 18 га – вторая.

Пример . В мае два цеха изготовили 1080 деталей. В июне первый цех увеличил выпуск деталей на 15%, а второй увеличил выпуск деталей на 12%, поэтому оба цеха изготовили 1224 детали. Сколько деталей изготовил в июне каждый цех?

Решение . Пусть х деталей изготовил в мае первый цех, у деталей – второй. Так как в мае изготовлено 1080 деталей, то по условию задачи имеем уравнение x + y = 1080.

Найдем 15% от х :

Итак, на 0,15х деталей увеличил выпуск продукции первый цех, следовательно, в июне он выпустил х + 0,15 х = 1,15 x деталей. Аналогично найдем, что второй цех в июне изготовил 1,12 y деталей. Значит, второе уравнение будет иметь вид: 1,15 x + 1,12 у = 1224. Таким образом, имеем систему:

из которой находим х = 480, у = 600. Следовательно, в июне цеха изготовили 552 детали и 672 детали соответственно.

Ответ: первый цех изготовил 552 детали, второй – 672 детали.

4. К группе задач на смеси и процентыотносятся задачи, в которых речь идет о смешении различных веществ в определенных пропорциях, а также задачи на проценты.

Задачи на концентрацию и процентное содержание

Уточним некоторые понятия. Пусть имеется смесь из п различных веществ (компонентов) А 1 А 2 , ..., А n соответственно, объемы которых равны V 1 , V 2 , ..., V n . Объем смеси V 0 складывается из объемов чистых компонентов: V 0 = V 1 + V 2 + ... + V n .

Объемной концентрацией вещества А i (i = 1, 2, ..., п) в смеси называется величина с i , вычисляемая по формуле:

Объемным процентным содержанием вещества А i (i = 1, 2, ..., п) в смеси называется величина p i , вычисляемая по формуле р i = с i , 100%. Концентрации с 1, с 2 , ..., с n , являющиеся безразмерными величинами, связаны равенством с 1 + с 2 + ... + с n = 1, а соотноше­ния

показывают, какую часть полного объема смеси составляют объе­мы отдельных компонентов.

Если известно процентное содержание i -го компонента, то его концентрация находится по формуле:

то есть Pi это концентрация i -го вещества в смеси, выраженная в процентах. Например, если процентное содержание вещества составляет 70%, то его соответствующая концентрация равна 0,7. И наоборот, если концентрация равна 0,33, то процентное содержание равно 33%. Таким образом, сумма р 1 + р 2 + …+ р n = 100%. Если известны концентрации с 1 , с 2 , ..., с n компонентов, составляющих данную смесь объема V 0 , то соответствующие объемы компонентов находятся по формулам:

Аналогичным образом вводятся понятия весовые (массовые) кон центрации компонентов смеси и соответствующие процентные со­держания. Они определяются как отношение веса (массы) чистого вещества А i , в сплаве к весу (массе) всего сплава. О какой концентрации, объемной или весовой, идет речь в конкретной задаче, всегда ясно из ее условия.

Встречаются задачи, в которых приходится пересчитывать объемную концентрацию на весовую или наоборот. Для того чтобы это сделать, необходимо знать плотности (удельные веса) компонентов, составляющих раствор или сплав. Рассмотрим для примера двухкомпонентную смесь с объемными концентрациями компонентов с 1 и с 2 1 + с 2 = 1) и удельными весами компонентов d 1 и d 2 . Масса смеси может быть найдена по формуле:

в которой V 1 и V 2 объемы составляющих смесь компонентов. Весовые концентрации компонентов находятся из равенств:

которые определяют связь этих величин с объемными концентрациями.

Как правило, в текстах таких задач встречается одно и то же повторяющееся условие: из двух или нескольких смесей, содержащих компоненты A 1 , A 2 , А 3 , ..., А n , составляется новая смесь путем перемешивания исходных смесей, взятых в определенной пропорции. При этом требуется найти, в каком отношении компоненты А 1, А 2 , А 3 , ..., А n войдут в получившуюся смесь. Для решения этой задачи удобно ввести в рассмотрение объемное или весовое количество каждой смеси, а также концентрации составляющих ее компонентов А 1, А 2 , А 3 , ..., А n . С помощью концентраций нужно «расщепить» каждую смесь на отдельные компоненты, а затем указанным в условии задачи способом составить новую смесь. При этом легко подсчитать, какое количество каждого компонента входит в получившуюся смесь, а также полное количество этой смеси. После этого определяются концентрации компонентов А 1, А 2 , А 3 , ..., А n в новой смеси.

Пример .Имеются два куска сплава меди и цинка с процентным содержанием меди 80% и 30% соответственно. В каком отношении нужно взять эти сплавы, чтобы, переплавив взятые куски вместе, получить сплав, содержащий 60% меди?

Решение . Пусть первого сплава взято х кг, а второго – у кг. По условию концентрация меди в первом сплаве равна 80/100 = 0,8, во втором – 30/100 = 0,3 (ясно, что речь идет о весовых концентрациях), значит, в первом сплаве 0,8х кг меди и (1 – 0,8)х = 0,2х кг цинка, во втором – 0,3 у кг меди и (1 – 0,3)y = 0,7у кг цинка. Количество меди в получившемся сплаве равно (0,8  х + 0,3  у) кг, а масса этого сплава составит (х + у) кг. Поэтому новая концентрация меди в сплаве, согласно определению, равна

По условию задачи эта концентрация должна равняться 0,6. Следова­тельно, получаем уравнение:

Данное уравнение содержит два неизвестных х и у. Однако по условию задачи требуется определить не сами величины х и у, а только их отношение. После несложных преобразований получаем

Ответ: сплавы надо взять в отношении 3: 2.

Пример .Имеются два раствора серной кислоты в воде: первый – 40%-ный, второй – 60%-ный. Эти два раствора смешали, после чего добавили 5 кг чистой воды и получили 20%-ный раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-ного раствора, то получили бы 70%-ный раствор. Сколько было 40%-ного и 60%-ного растворов?

Решение . Пусть х кг – масса первого раствора, у кг – второго. Тогда масса 20%-ного раствора (х + у + 5) кг. Так как в х кг 40%-ного раствора содержится 0,4х кг кислоты, в у кг 60%-ного раствора содержится 0,6y кг кислоты, а в (х + у + 5) кг 20%-ного раствора содержится 0,2(х + у + 5) кг кислоты, то по условию имеем первое уравнение 0,4х + 0,6y = 0,2(х +у + 5).

Если вместо 5 кг воды добавить 5 кг 80%-ного раствора, то получится раствор массой (х + у + 5) кг, в котором будет (0,4х + 0,6у + 0,8  5) кг кислоты, что составит 70% от (х + у + 5) кг.

Основные методы решения геометрических задач: геометрический – требуемое утверждение выводится с помощью логических рассуждений из ряда известных теорем; алгебраический – искомая геометрическая величина вычисляется на основании различных зависимостей между элементами геометрических фигур непосредственно или с помощью уравнений; комбинированный – на одних этапах решение ведется геометрическим методом, а на других алгебраическим.

Треугольники Признаки равенства треугольников, прямоугольных треугольников. Свойства и признаки равнобедренного треугольника. Задача 1. Медиана АМ треугольника АВС равна отрезку ВМ. Доказать, что один из углов треугольника АВС равен сумме двух других углов. Задача 2. Отрезки АВ и СD пересекаются в их общей середине О. На АC и ВD отмечены точки К 1 такие, что АК=ВК 1. Доказать, что а) ОК=ОК 1, б) точка О лежит на прямой КК 1. Задача 3 (признак равнобедренного треугольника). Если в треугольнике биссектриса является медианой, то треугольник равнобедренный.

Задача 4 (признак прямоугольного треугольника по медиане). Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный. Задача 5 (свойство медианы прямоугольного треугольника). Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна её половине. Задача 6. Доказать, что в прямоугольном треугольнике с неравными катетами биссектриса прямого угла делит угол между высотой и медианой, проведенными из той же вершины, пополам. Задача 7. Медиана и высота треугольника, проведенные из одной вершины, делят этот угол на три равные части. Доказать, что треугольник прямоугольный.

Свойства площадей. Площади многоугольников Следствие из теоремы о площади треугольника. Если высоты двух треугольников равны, то их площади относятся как основания. Теорема об отношении площадей треугольников, имеющих равные углы. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.

Теоремы о точках пересечения чевиан Теорема. В любом треугольнике медианы пересекаются в одной точке (центроид, центр тяжести) и делятся этой точкой в отношении 2: 1, считая от вершины. Свойства медианы: 1. Медиана разбивает треугольник на два равновеликих, то есть имеющих одинаковую площадь. 2. Три медианы разбивают треугольник на шесть равновеликих. 3. Отрезки, соединяющие центроид с вершинами треугольника, разбивают треугольник на три равновеликие части.

Одним из основных методов решения задач, в которых участвуют медианы треугольника, является метод «удвоения медианы» . Достроить треугольник до параллелограмма и воспользоваться теоремой о сумме квадратов его диагоналей. Задача 8. Найти отношение суммы квадратов медиан треугольника к сумме квадратов всех его сторон.

Свойство биссектрисы внутреннего угла треугольника. Биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим ее сторонам. Теорема. В любом треугольнике биссектрисы пересекаются в одной точке (ицентр), которая является центром вписанной в него окружности. Замечание: Очевидно, что центроид и ицентр треугольника всегда лежат внутри него.

. Решение. B A 1 1) В треугольнике ABC AA 1 – биссектриса угла A, поэтому AB: AC = BA 1: CA 1 = BA 1: (BC – BA 1) I или C А B 1 2) В треугольнике ABA 1 BI – биссектриса угла B, поэтому AI: IA 1 = BA: BA 1 или

Теорема о серединном перпендикуляре к отрезку. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром описанной около него окружности. Теорема. В любом треугольнике высоты пересекаются в одной точке (ортоцентр треугольника). Вопрос. Где находится ортоцентр остроугольного, прямоугольного, тупоугольного треугольников?

Решение. B 1) Tреугольник BC 1 Н – прямоугольный, и C 1 H 2) Треугольник BC 1 C – прямоугольный, и A B 1 C

Используя формулы приведения. Откуда Замечание. Если один из углов тупой, то в (*) соответствующий косинус нужно взять по модулю.

Интересными являются задачи на нахождение расстояния от произвольной вершины треугольника до одной из его замечательных точек. Сначала решим задачу на нахождения расстояния от вершины до ортоцентра. Задача 11. В треугольнике АВС опущены высоты ВВ 1 и СС 1. Найти длину отрезка НВ, где Н – точка пересечения высот. B 1) треугольник BC 1 Н – прямоугольный, и Решение. C 1 H 2) треугольник BC 1 C – прямоугольный, и A B 1 C

Задача 12. Найти расстояние от вершины B треугольника ABC до ортоцентра, если Решение. По теореме косинусов Тогда

Задача 13. По углам A и B треугольника ABC (A

Задача 14. К какой из вершин треугольника ближе расположен ицентр? Решение. C D I A Пусть I – ицентр, точка пересечения биссектрис треугольника ABC Воспользуемся тем, что против большей стороны треугольника лежит больший угол. Если AB > BC, то A

Задача 15. Какая из высот треугольника наименьшая? Решение. C B 1 А 1 H A C 1 Пусть Н – точка пересечения высот треугольника ABC. Если AC B. Окружность с диаметром BC пройдет через точки С 1 и В 1. B Учитывая, что из двух хорд меньше та, на которую опирается меньший вписанный угол, получаем, что СС 1

Задача 16. Отрезок АН – высота треугольника АВС. Из вершин В и С проведены перпендикуляры ВВ 1 и СС 1 к прямой, проходящей через точку А. Доказать, что треугольники АВС и НВ 1 С 1 подобны. Найти площадь треугольника НВ 1 С 1, если площадь треугольника АВС равна S, а АС: НС 1 =5: 3. Доказательство. Так как треугольники АНС и АСС 1 прямоугольные, то точки Н и С 1 А лежат на окружности с диаметром АС. С 1 В В 1 Н Аналогично, точки В 1 и Н лежат на окружности с диаметром АВ. С треугольнике АСС 1

Значит, Так как имеют место (1) и (2), А то треугольники АВС и НВ 1 С 1 подобны. С 1 Коэффициент подобия В В 1 Н С значит,

Задача 17. Пусть в остроугольном треугольнике ABC точки A 1, B 1, C 1 есть основания высот. Доказать, что точка H - пересечения высот треугольника ABC является точкой пересечения биссектрис треугольника A 1 B 1 C 1. Решение. На сторонах AC и BC B треугольника ABC, как на C 1 А диаметрах, построим окружности. H Точки A 1, B 1, C 1 принадлежат этим окружностям. 1 A B 1 C Поэтому B 1 C 1 C = B 1 BC, как углы, опирающиеся на одну и ту же дугу окружности. B 1 BC = CAA 1, как углы с взаимно перпендикулярными сторонами.

CAA 1 = CC 1 A 1, как углы, опирающиеся на одну и ту же дугу окружности. Следовательно, B 1 C 1 C = CC 1 A 1, т. е. C 1 C является биссектрисой угла B 1 C 1 A 1. Аналогичным образом показывается, что AA 1 и BB 1 являются биссектрисами углов B 1 A 1 C 1 и A 1 B 1 C 1. B C 1 А 1 H A B 1 C Самостоятельно исследовать случаи прямоугольного и тупоугольного треугольника.

Интеграция алгебраических и геометрических методов в решении задач

Одной из актуальных проблем школьного математического образования на современном этапе является проблема интеграции математических знаний, формирования целостных представлений учащихся о математике как науке. Особенно важно решение данной проблемы для основной школы, где изучаются две математические дисциплины: алгебра и геометрия.

Понятие «интеграция» [лат. integratio - восстановление, восполнение; integer - целый] трактуется как восстановление, объединение в целое каких-либо частей, элементов; как состояние связанности в целое отдельных дифференцированных частей, а также как процесс, ведущий к такому состоянию. В обучении интеграцию часто понимают как взаимовлияние, взаимопроникновение и взаимосвязь содержания различных учебных дисциплин.

Так как в обучении математике основным видом деятельности учащихся является решение задач, то целесообразно интеграцию алгебры и геометрии осуществлять по линии их методов. Алгебраический метод (по отношению к элементарной математике) трактуется как метод, заключающийся в употреблении букв и буквенных выражений, над которыми по определенным правилам производятся преобразования. Его называют еще методом буквенных вычислений.

Геометрический метод характеризуют как метод, идущий от наглядных представлений. Существенными признаками этого понятия являются геометрические (наглядные) представления и законы геометрии, в которых отражены свойства геометрических фигур.

Если за основу классификации алгебраических и геометрических методов принять систему знаний, на которых основан метод, то получим следующие методы.

1. Алгебраические: метод тождественных преобразований; метод уравнений и неравенств; функциональный метод; векторный метод; координатный метод.

2. Геометрические (ограничимся планиметрией): метод длин; метод треугольников; метод параллельных прямых; метод соотношений между сторонами и углами треугольника; метод четырехугольников; метод площадей; метод подобия треугольников; тригонометрический метод (метод, основанный на соотношениях между сторонами и углами треугольника, выраженными через тригонометрические функции); метод геометрических преобразований; графический метод (хотя данный метод изучается в курсе алгебры, но он основан на использовании геометрических представлений функций и связанных с ними законов геометрии).

Будем считать, что каждый метод состоит из определенных приемов, а каждый прием - из действий. Под интеграцией алгебраического и геометрического методов будем понимать процесс сочетания данных методов или связи их приемов в один метод.

В области обучения решению задач интеграция методов предполагает параллельное (на одном уроке) решение задачи разными методами (алгебраическими и геометрическими) или решение алгебраической задачи геометрическим методом, а геометрической задачи - алгебраическим методом. Средством интеграции могут служить специальные блоки задач, в которые входят как алгебраические, так и геометрические задачи. Приведем примеры.

7 класс

Здесь можно использовать текстовые задачи из курса алгебры и геометрические задачи, решаемые методом уравнений.

Задача 1 . В одном элеваторе было зерна в два раза больше, чем в другом. Из первого элеватора вывезли 750 т зерна, во второй элеватор привезли 350 т, после чего в обоих элеваторах зерна стало поровну. Сколько зерна было первоначально в каждом элеваторе?

Для решения этой задачи используем метод уравнений и неравенств из алгебры и метод длин из геометрии, основанный на свойствах длины отрезка.

Алгебраический метод . Пусть x т зерна было первоначально во втором элеваторе, тогда 2x т зерна было первоначально в первом элеваторе; (2x – 750) т зерна осталось в первом элеваторе, а (x + 350) т зерна стало во втором элеваторе. Так как в обоих элеваторах зерна стало поровну, то можно составить уравнение

2x – 750 = x + 350, откуда x = 1100, 2x = 2 · 1100 = 2200.

Ответ: 2200 т зерна было в первом элеваторе и 1100 т - во втором.

Геометрический метод. Решаем данную задачу с помощью линейной диаграммы. Линейная диаграмма - это, обычно, отрезок или несколько отрезков, длины которых соответствуют численным значениям рассматриваемой величины. Задачу решаем по этапам.

1-й этап. Построение линейной диаграммы. После прочтения текста задачи ученики обсуждают следующие вопросы (возможна помощь учителя).

1. Сколько ситуаций рассматривается в задаче?

[Две: первоначальная и конечная.]

2. С какой ситуации следует начать построение линейной диаграммы?

[Можно начать построение с первой ситуации и от нее перейти ко второй, а можно
сначала построить линейную диаграмму конечной ситуации и перейти от нее к
первоначальной. Рассмотрим первый вариант построения линейной диаграммы.]

3. Что представляет собой линейная диаграмма первоначальной ситуации?

[Два отрезка, один из которых в два раза больше другого. Первый отрезок изображает
количество зерна в первом элеваторе, а второй - во втором элеваторе.]

После этого учащиеся строят диаграмму первоначальной ситуации. Затем обсуждение продолжается.

4. Как перейти на диаграмме от первой ситуации ко второй?

[Надо из первого отрезка вычесть отрезок, условно изображающий 750 т, а
ко второму отрезку прибавить отрезок, изображающий 350 т.]

5. Эти отрезки берутся произвольно?

[Нет, следует учитывать, что вновь полученные отрезки должны
быть равны, так как на обоих элеваторах зерна стало поровну.]

Выполнив действия с отрезками, учащиеся получают диаграмму конечной ситуации. Первый этап работы над задачей заканчивается обозначением отрезков и оформлением записей на чертеже.

2-й этап. Решение получившейся геометрической задачи. Построенная линейная диаграмма превращает алгебраическую задачу в геометрическую, решение которой основано на использовании свойств длины отрезка, а именно:

1) равные отрезки имеют равные длины; меньший отрезок имеет меньшую длину;
2) если точка делит отрезок на два отрезка, то длина всего отрезка равна сумме длин этих двух отрезков.

Решение учащиеся записывают на геометрическом языке, используя обозначения отрезков, а результат переводят на естественный язык. В данном случае этот перевод осуществляется автоматически за счет переноса терминологии (3-й этап). Вначале следует делать подробную запись решения с указанием того, что изображает каждый отрезок. Постепенно можно переходить к краткой записи, так как некоторые факты видны на рисунке.

Приведем подробную запись решения задачи 1.

Решение. 1-й этап. Пусть отрезок AB изображает количество зерна в первом элеваторе (рис. 1), тогда отрезок будет изображать количество зерна во втором элеваторе.

AB = 2CD - первоначальное распределение зерна между элеваторами. Из первого элеватора вывезли 750 т зерна, а во второй элеватор привезли 350 т, поэтому вычтем из отрезка AB отрезок BK, условно изображающий 750 т, а к отрезку CD прибавим отрезок DE, изображающий 350 т.

2-й этап. Способ I. CD = AF = FB (по построению),

FB = FK + KB = 350 + 750 = 1100, значит, CD = 1100, AB = 1100 · 2 = 2200.

3-й этап. Ответ: в первом элеваторе было 2200 т зерна, во втором 1100 т.

Учащиеся могут сделать краткую запись решения задачи, например, она может быть такой.

Решение. AB = 2CD - первоначальное распределение зерна между двумя элеваторами; BK = 750, DE = 350.

AK = CE - конечное распределение зерна между элеваторами.

CD = AF = FB (по построению), FB = 350 + 750 = 1100, тогда

CD = 1100, AB = 1100 · 2 = 2200.

Ответ: 2200 т, 1100 т.

Линейная диаграмма позволяет составить различные уравнения к задаче, которые учащиеся не могут записать без чертежа, то есть появляется возможность решить задачу алгебраически разными способами. Приведем некоторые из них.

Способ II. Пусть AK = CE = x, тогда, так как AB = 2CD, получим x + 750 = 2(x – 350),

откуда x = 1450, CD = 1450 – 350 = 1100, AB = 1100 · 2 = 2200.

Ответ: 2200 т, 1100 т.

Способ III. Пусть CD = x, тогда AB = 2x. Так как AK = CE, то имеем 2x – 750 = x + 350

(такое же уравнение получается при решении задачи без диаграммы.)

Линейная диаграмма позволяет не только решить задачу без уравнения, но часто ответ можно «усмотреть» прямо на чертеже.

Задача 2 . На одном садовом участке в пять раз больше кустов малины, чем на другом. После того как с первого участка пересадили на второй 22 куста, то на обоих участках кустов малины стало поровну. Сколько кустов малины было на каждом участке?

Решение. 1-й этап. Пусть отрезок AB изображает количество кустов малины на первом участке, а отрезок CD - количество кустов малины на втором участке (рис. 2). AB и 5CD - первоначальное распределение кустов малины между участками.

Так как на обоих участках кустов малины стало поровну, то разделим отрезок BE пополам (BF = FE) и из отрезка AB вычтем отрезок BF, а к отрезку CD прибавим отрезок DK (DK = BF). AF = CK - конечное распределение кустов малины между участками.

2-й этап. По условию с первого участка пересадили на второй 22 куста, значит, BF = 22 = 2CD, тогда CD = 11, AB = 5CD = 5 · 11 = 55.

Ответ: на первом участке было 55 кустов малины, на втором 11 кустов.

Одно из преимуществ использования геометрического метода при решении рассмотренных задач состоит в наглядности. Построение линейной диаграммы и переход от одного ее состояния к другому позволяет учащимся лучше воспринимать ситуации, описанные в задаче и, следовательно, помогает найти пути ее решения. Иногда ответ почти очевиден на чертеже, это дает возможность использовать линейную диаграмму для проверки решения задачи, которое выполнено алгебраическим методом без чертежа.

На мотивационном этапе формирования геометрического метода целесообразно предлагать решить задачу двумя методами: алгебраическим и геометрическим. Задачу следует подбирать таким образом, чтобы ее решение с помощью линейной диаграммы было более рациональным по сравнению с решением без чертежа. Приведем пример решения одной из таких задач.

Задача 3 . В первом баке в четыре раза больше жидкости, чем во втором. Когда из первого бака перелили 10 л жидкости во второй, оказалось, что во втором баке стало того, что осталось в первом. Сколько литров жидкости было в каждом баке первоначально?

Решение. Алгебраический метод . Приводим к уравнению

где x л - первоначальное количество жидкости во втором баке.

Решая это уравнение, находим x = 10, тогда

4x = 4 · 10 = 40.

Итак, в первом баке было 40 л, а во втором 10 л.

Геометрический метод . Построим линейную диаграмму первоначального распределения жидкости между двумя баками. Пусть отрезок AB изображает количество жидкости (л) в первом баке (рис. 3), тогда отрезок CD будет изображать количество жидкости (л) во втором баке (построение можно начинать с отрезка CD). AB = 4CD - первоначальное распределение жидкости между двумя баками.

Процесс переливания жидкости из одного бака в другой отобразим как вычитание некоторого отрезка из отрезка AB и прибавление его к отрезку CD. Чтобы узнать длину отрезка, который следует вычесть из отрезка AB, необходимо заметить следующее: в первом и во втором баках было 5 частей жидкости, причем в первом баке было 4 части, а во втором 1 часть.

После переливания общее количество жидкости (5 частей) не изменилось, но во втором баке стало 2 части, а в первом 3 части. Значит, из отрезка AB надо вычесть отрезок BE (BE = CD), а к отрезку CD прибавить отрезок DK (DK = BE), тогда , что соответствует переливанию жидкости. Поэтому BE = 10, тогда

AB = 40, CD = BE = 10.

Итак, в первом баке было 40 л жидкости, а во втором 10 л.

После решения задачи следует сравнить с учащимися оба метода решения, выявить преимущества и недостатки каждого из них.

Необходимо заметить, что с помощью линейных диаграмм решаются задачи, в которых даны отношения значений величин (меньше, больше, на, в, столько же) и рассматривается одна или несколько ситуаций.

Текстовые задачи, в которых одна из величин представляет собой произведение двух других, позволяют интегрировать метод площадей, основанный на свойствах площади, и метод уравнений и неравенств. Приведем примеры.

Задача 4 . Бригада лесорубов ежедневно перевыполняла норму на 16 м 3 , поэтому недельную норму (шесть рабочих дней) она выполнила за четыре дня. Сколько кубометров леса заготовляла бригада в день?

Решение. Алгебраический метод . Приходим к уравнению

где x м 3 - дневная норма бригады по плану.

Геометрический метод . Так как в задаче рассматривается произведение двух величин (A = pn), то для наглядности представим его в виде двумерной диаграммы. Двумерная диаграмма - это площадь одного или нескольких прямоугольников, стороны которых изображают численные значения рассматриваемых величин (p и n), а площадь прямоугольника изображает их произведение (S = A).

Решение задачи, также как и в случае линейной (одномерной) диаграммы, проходит в три этапа:

1) построение двумерной диаграммы, то есть перевод задачи на язык отрезков и площадей фигур;
2) решение получившейся геометрической задачи путем составления уравнения на основе использования свойств площади многоугольных фигур;
3) перевод полученного ответа с геометрического языка на естественный язык.

1-й этап. Реализуется в ходе анализа текста задачи. Учащиеся отвечают на следующие вопросы.

1. Можно ли построить двумерную диаграмму по условию задачи?

[Можно, так как одна из величин (недельная норма бригады) равна
произведению двух других: дневная норма бригады и количества дней.]

2. Что представляет собой двумерная диаграмма?

[Прямоугольник, одна из сторон которого определяет
дневную норму бригады, а другая - количество дней.]

3. Сколько прямоугольников надо построить?

[Два, их площади будут определять недельную норму бригады
по плану и фактически выполненную работу за четыре дня.]

4. Что можно сказать о площадях этих прямоугольников?

[Они равны, так как выполненная за четыре
дня работа равна недельной норме.]

Затем учащиеся с помощью учителя выполняют построение. Основание и высота первого прямоугольника берутся произвольно, второй прямоугольник равновелик первому, причем их основания представляют собой отрезки, лежащие на одном луче, с общим началом (рис. 4). Первый этап завершается обозначением прямоугольников и оформлением записей на чертеже.

В начале обучения геометрическому методу ведется подробная запись того, что обозначает длина, ширина и площадь каждого прямоугольника, то есть задача переводится на геометрический язык.

2-й этап. Этап начинается с рассмотрения площадей образовавшихся прямоугольников и установления соотношений между ними (равенства, неравенства). Перед учащимися ставится вопрос: назовите прямоугольники с равными площадями. Ведется соответствующая запись:

S ABCD = S AMNK = S, S 1 = S 2 , так как S 1 + S 3 = S 2 + S 3 .

Среди учащихся могут быть и такие, которые выполнят чертеж с большой неточностью, то есть на чертеже прямоугольники BMNE и KECD будут явно не равновелики. Следует обратить на это их внимание и заметить, что линии KB и CN должны быть параллельны.

Используя условие S 1 = S 2 , составляется уравнение. Приведем примерную запись решения задачи 4 геометрическим методом.

Решение. Пусть S ABCD определяет недельную норму бригады лесорубов. AB - производительность (м 3) бригады в день по плану; AD - количество дней; S AMNK - объем работы, выполненный бригадой за четыре дня.

S AMNK = S ABCD = S;

S 1 = S 2 , так как S 1 + S 3 = S 2 + S 3 .

S 1 = 2KE, S 2 = 16 · 4 = 64,

значит 2KE = 64, тогда KE = 32.

AB = KE = 32, AM = AB + BM = 32 + 16 = 48.

Ответ: бригада заготовляла в день 48 м 3 леса.

С помощью двумерной диаграммы и геометрических соотношений, в частности равновеликости прямоугольников ABCD и AMNK, можно составить другое уравнение. Если AB = x, то получаем

(такое же уравнение получается при решении задачи без чертежа).

Задача 5 . Заказ по выпуску машин завод должен был выполнить за 15 дней. Но уже за два дня до срока завод не только выполнил план, но и выпустил сверх плана еще шесть машин, так как ежедневно выпускал по две машины сверх плана. Сколько машин должен был выпустить завод по плану?

Особенность решения этой задачи геометрическим методом, по сравнению с решением предыдущей задачи, состоит в том, что площади S 1 и S 2 (см. рис. 4) не равны, так как по условию завод не только выполнил план, но и выпустил сверх плана еще шесть машин. Это учащиеся должны иметь в виду как при построении чертежа, так и при составлении уравнения.

Решение. Пусть AB изображает производительность завода в день по плану (рис. 5). AD - срок выполнения заказа по плану. Тогда S ABCD определяет весь заказ по выпуску машин, AM изображает количество машин, которые выпускал завод ежедневно, AP - срок выполнения заказа, а S AMNP соответствует количеству машин, которые завод выпустил за 13 дней.

По условию завод выпустил сверх плана шесть машин, поэтому имеем

S 1 + S 3 + 6 = S 3 + S 2 или S 1 + 6 = S 2 ,

но S 2 = 2 · 13 = 26, следовательно S 1 + 6 = 26, откуда S 1 = 20. С другой стороны, S 1 = 2AB, поэтому 2AB = 20, тогда AB = 10, S ABCD = AB · 15 = 10 · 15 = 150.

Ответ: завод должен был выпустить по плану 150 машин.

Средством интеграции методов в 7-м классе могут служить и геометрические задачи. Приведем примеры.

Задача 6 . Точка A делит отрезок CD пополам, а точка B - на неравные части. Докажите, что площадь прямоугольника с измерениями CB и BD равна разности площадей квадратов со сторонами AD и AB

Решение. Пусть CD = x, BD = y. Тогда

Поэтому для решения задачи следует доказать тождество

Как видим, в решении данной задачи задействованы метод площадей и метод тождественных преобразований.

Задача 7 . AP = PQ = QR = RB = BC, AB = AC (рис. 7). Найдите угол A.

Решение. Пусть Р A = x, тогда Р 1 = Р A = x. Р 2 = 2x (как внешний угол треугольника APQ), Р 4 = Р 2 = 2x.

Р 3 = 180° – (Р 2 + Р 4) = 180° – 4x,

Р 5 = 180° – (Р 1 + Р 3) = 3x,

Р 6 = Р 5 = 3x. Р 7 = Р B – Р 6, но

поэтому

Так как Р 8 = Р C, то Р C + Р 8 + Р 7 = 2Р C + Р 7 = 180°, или

Решая это уравнение, получаем, что x = 20°.

Ответ: Р A = 20°.

При решении этой задачи использовались метод треугольников и метод уравнений и неравенств. Аналогичные задачи имеются в учебниках геометрии.

Итерационные алгебраические методы реконструкции изображения

дипломная работа

4.1 Алгебраический метод

Пусть функция f(x) = f(x, y) описывает некоторое распределение плотностей в каком-либо выделенном сечении объекта. Основная задача вычислительной томографии состоит в восстановлении функции f(x) по набору экспериментально полученных проекций:

которые представляют собой линейные интегралы от искомого распределения вдоль прямых L:. Здесь - угол сканирования, - дельта-функция.

На практике, как правило, проекции заданы не для всех значений и, а только для конечного их числа. Существует целый ряд практических задач, для которых число дискретизаций по 0 весьма ограничено (от 3 до 5). Задачи такого типа относятся к задачам малоракурсной томографии и являются одними из наиболее трудно решаемых. Задача может быть поставлена следующим образом: по заданному конечному набору проекций функции двух переменных получить наилучшую оценку этой функции.

Сформулируем общую постановку задачи восстановления решения задачи (4.1) с помощью алгебраических методов, построим итерационный алгоритм восстановления таких задач. Применение алгебраических методов принципиально отличается от метода интегральных преобразований, поскольку предполагает дискретизацию изображения до начала алгоритма восстановления. Построение дискретной модели задачи реконструкции изображения можно описать следующим образом.

Пусть требуется восстановить двумерную функцию f(x)=f(x,y), заданную в области D R2. Предположим, что область восстановления D заключена в квадрат К, который разбит на п равных маленьких квадратиков, называемых элизами. Пронумеруем все элизы от 1 до п. При этом примем основное ограничение, которое заключается в том, что восстанавливаемая функция f(x) принимает постоянное значение fj внутри j-го элиза, т. е. функцию f (x) заменяем дискретизированным выражением

если (х) j-му элизу;

в противном случае. (4.3)

Предположим, что задано множество линейных непрерывных функционалов, которые представляют собой прямое преобразование Радона вдоль набора некоторых прямых:

Тогда -- проекция функции f(х) вдоль луча Li.

Применяя операторы к равенству (4.2) и учитывая их непрерывность и линейность, получаем систему линейных алгебраических уравнений

где, i = 1, ..., m; j = 1, ..., n.

Если семейство базисных функций {bj} задается формулой (4.3), то

Длина пересечения i-го луча с j-м элизом.

Матрицу коэффициентов обозначим А=(), вектор изображений -- f=(f1, f2, ..., fn), вектор проекций -- R=(R1, R1, ..., Rт). Тогда решение задачи сводится к решению системы линейных алгебраических уравнений вида

При этом вектор R задан заведомо с некоторой погрешностью.

Стоит отметить, что вид системы (4.5) зависит от конкретного выбора системы базисных функций bi и набора функционалов Ri. Существуют другие способы выбора сетки разбиения области D (а значит, и базисных функций bi). Функционалы выбираются не только в виде (4.4), но и с учетом реальной длины лучей и с использованием кусочно-постоянных функций. Кроме того, постановка задачи не зависит от геометрии лучей и легко формулируется для трехмерного случая.

4.2 Использование операторов интерлинации

В данном пункте рассматривается новый метод представления приближенного решения задачи плоской компьютерной томографии (РКТ) в виде кусочно-постоянных функций. Метод имеет более высокую точность, чем классический метод решения плоской задачи РКТ с использованием кусочно-постоянных функций.

разбиения Е2 на четырехугольники. Введем следующие обозначения.

Оператор О1 является оператором аппроксимации f(x,y) кусочно-постоянными функциями по x. Если y=const, то находится из условия наилучшей аппроксимации f(x,y) в полосе, yE. Аналогично, оператор О2 является оператором аппроксимации f(x,y) кусочно-постоянными функциями по y.

Если x=const, тогда j(x) находится из условия наилучшей аппроксимации f(x,y) в полосе, хE.

Введем следующие операторы:

Значения найдем из условия наилучшей аппроксимации f числом f(оij, ij) в

Лемма 3.1 Пусть функция, r=1,2 или и является функцией с ограниченной вариацией. Тогда операторы Onm обладают свойствами

Доказательство. Свойства (3.25) и (3,26) вытекают из того, что

Свойство (3,27) вытекает из того, что

Свойства (3,29) выполняются для всех дифференцируемых функций и для непрерывных функций с ограниченной вариацией.

Лемма 1 доказана.

Следствие 1. Для и для непрерывных функций с ограниченной вариацией мы получаем следующую оценку погрешности.

Следствие 2. Заменяя функции кусочно-постоянными функциями одной переменной с той же самой оценкой погрешности

получим оператор

Получим значения для gi (x)

Получим значения для Gi (y)

со следующими свойствами:

Следствие 3. Оператор

имеет следующие свойства:

Если, r=1,2 или и является функцией с ограниченной вариацией, тогда

Доказательство. Для погрешности можно написать равенство

Отсюда вытекает неравенство

Применяя оценки 3 и 4 к правой части полученного выражения, придем к оценке (3,42).

Следствие 3 доказано.

Если m=n, тогда оператор имеет погрешность (он использует постоянных); приближение оператором имеет погрешность. То есть оператор (он использует постоянных) имеет ту же погрешность, как и оператор:

В следующих пунктах отмечаются преимущества указанного метода.

Количество неизвестных

Использование интерлинации функций при построении приближенного решения, а именно представление приближенного решения в виде:

привело к появлению 2n3+n2 постоянных, которые являются неизвестными. Следовательно оператор использует O(n3) постоянных-неизвестных. Оператор имеет погрешность.

Использование оператора - классическое представление приближенного решения - приводит к появлению n4 постоянных, которые являются неизвестными. Следовательно оператор использует O(n4) постоянных-неизвестных. Оператор имеет погрешность.

Обобщая сказанное, делаем вывод, что использование оператора требует нахождение O(n3) неизвестных, в то время как использование оператора требует нахождения O(n4) неизвестных для приближения решения с той же самой погрешностью.

Поэтому использование оператора дает значительные преимущества по количеству арифметических операций, так как для достижения той же точности необходимо решать систему линейных алгебраических уравнений меньшей размерности.

Для иллюстрации указанного факта приводим следующую таблицу:

Таблица 1

Неизвестных

Неизвестных

Погрешность

Сравнения показывают, что для достижения одной и той же точности, при использовании оператора, можно брать меньшее количество уравнений. Например, для n=9 количество неизвестных в классическом методе в 4 раза больше.

В силу того, что система должна быть переопределенной, а для n=9 неизвестных 1539 (для случая с интерлинацией) и 6561(для классического метода), и следует брать число уравнений больше, чем число неизвестных, то ясно, что в методе с интерлинацией этих уравнений будет меньше.

Вычислительный эксперимент, проведенный с помощью разработанных алгоритмов и программ, подтвердил указанные утверждения.

Дискретизация области

Применение схем решения задачи плоской компьютерной томографии, основанных на использовании и обуславливает дискретизацию области.

Для - нерегулярная сетка: разбивка на квадраты со стороной и прямоугольники со сторонами, и, вытянутые вдоль оси Ox и Oy соответственно. Узлы сетки располагаются в центрах квадратов и прямоугольников.

Для - регулярная сетка: разбивка на квадраты со стороной. Узлы сетки располагаются в центрах квадратов.

Положительный эффект применения оператора достигается за счет другого расположения узлов, что вызывает связь между следующим соотношением:

Которые совпадают с узлами, расположенными в центрах соответствующего квадрата, вертикального и горизонтального прямоугольников.

Для этих точек, т.к. в этих центрах, то имеем точные решения.

Значит, приближенное решение, построенное с помощью, представляет собой интерполяционную формулу. С ее помощью подсчитывается значение функции в любых точках области D, отличных от указанных, в которых наблюдается точное совпадение

Относительно точного совпадения в указанных центрах. Значит,

Антагонистическая игра

Возможны два случая для решения задач алгебраическим методом: 1. матрица имеет седловую точку; 2. матрица не имеет седловую точку. В первом случае решение - это пара стратегий, образующих седловую точку игры. Рассмотрим второй случай...

Вычислительная математика

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения. Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке , т. е. x*, так, что f(x*) = 0...

Вычислительная математика

Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений. Пусть корень x* , так, что f(a)f(b) < 0. Предполагаем, что функция f(x) непрерывна на отрезке и дважды непрерывно дифференцируема на интервале (a, b). Положим x0 = b...

Вычислительная математика

В этом и следующем разделе рассмотрим модификации метода Ньютона. Как видно из формулы (2.13), метод Ньютона требует для своей реализации вычисления производной, что ограничивает его применение. Метод секущих лишен этого недостатка...

Итерационные алгебраические методы реконструкции изображения

Пусть функция f(x) = f(x, y) описывает некоторое распределение плотностей в каком-либо выделенном сечении объекта. Основная задача вычислительной томографии состоит в восстановлении функции f(x) по набору экспериментально полученных проекций: (4...

x2, x4, x5, x6 - базисные переменные, x1, x3 - свободные переменные x1?F? x3?F? Выбираем x3 ? x4 x2, x3, x5, x6 - базисные переменные, x1, x4 - свободные переменные x1?F? x4?F? Выбираем x1 ? x5 x1, x2, x3, x6 - базисные переменные, x4...

Линейное и нелинейное программирование

Метод поиска глобального минимума, называемый методом поиска по координатной сетке, является надежным, но применим только для задач малой размерности (n<4). Неправильный выбор начального шага сетки может привести к тому...

Линейное и нелинейное программирование

Итерация 1. Счет итераций k = 0 Итерация 2. Счет итераций k = 1 Поиск завершен 3.3...

Теоретические сведения Пусть функция y = f(x) непрерывна на отрезке . Нам требуется вычислить определенный интеграл. Так же как в методе парабол разбиваем отрезки. Суть метода прямоугольников заключается в том...

Математическое моделирование и численные методы в решении технических задач

Теоретические сведения Пусть нам требуется вычислить определенный интеграл, где y = f(x) непрерывна на отрезке . Разобьем отрезок на n равных интервалов длины h точками. В этом случае шаг разбиения определяется так же как в методе парабол...

Методы решения дифференциальных уравнений

Метод прямоугольников - метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке...

Системный анализ групп преобразований состояний кубика Рубика

CFOP - это название четырёх стадий сборки(рисунок 3.2): Cross, F2L, OLL, PLL: 1) Cross - сборка креста...

Системы линейных уравнений

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных, называется определителем системы...

Системы линейных уравнений

Метод Гаусса основывается на следующей теореме: элементарным преобразованиям строк расширенной матрицы системы отвечает превращение этой системы в эквивалентную. С помощью элементарных преобразований строки расширенной матрицы...

Численные методы решения трансцендентных уравнений

Пусть уравнение (1) имеет корень на отрезке , причем f (x) и f "(x) непрерывны и сохраняют постоянные знаки на всем интервале . Геометрический смысл метода Ньютона состоит в том, что дуга кривой y = f(x) заменяется касательной...