Как выглядит люминесцентная лампа. Коротко о люминесцентных лампах

Представляет собой такой источник света, основой которого являются люминофоры (именно они отвечают за «превращение» ультрафиолета в видимый свет). Как правило, лампы такого типа используются для создания общего освещения в помещении.

Разновидности люминесцентных ламп

Современные люминесцентные лампы выпускаются самых разнообразных модификаций, различных типоразмеров и цоколей. Основными видами таких ламп считаются следующие:
- линейные (или трубчатые);
- кольцевые;
- U-образной формы.

Кроме того, подобные лампы подразделяют на образцы высокого (для освещения улиц) и низкого давления (для квартир или промышленных объектов). Также, существует классификация люминесцентных лампочек по «оттенку» света, который они излучают:
- белый свет (маркировка ЛБ) – холодный (ЛХБ) или теплый (ЛТБ);
- естественный (ЛЕ);
- дневной(ЛД).

Преимущества и недостатки люминесцентных ламп

У люминесцентных «источников» света достаточно много плюсов, среди которых:
- высокая надежность;
- отличная светоотдача;
- длительный период эксплуатации (примерно 5 лет);
- достаточно высокий КПД;
- множество сфер применения;
- экономичность;
- компактные размеры;
- не происходит сильного нагрева поверхности;
- различный спектр излучения (от холодного света до приближенного к дневному).

Кроме несомненных преимуществ использования люминесцентных ламп , есть и характерные для этого способа освещения недостатки.

Во-первых, необходимость специальной утилизации. Связано это с тем, что люминесцентные модели содержат некоторое количество ртути (около 3 мг). При правильной эксплуатации ламп вреда для здоровья человека они не представляют.

Во-вторых, необходимо учесть тот факт, что люминесцентные лампы излучают ультрафиолет. Но содержание его настолько незначительно, что не способно негативно влиять на человеческий организм.

Также мерцание подобных источников света часто бывает раздражающим для глаз и может даже вызывать искажение форм и цветов (особенно у людей с ослабленным зрением).

Сферы применения люминесцентных ламп

Лампы такого типа используются для общего освещения различных учреждений. Это офисные помещения и магазины, медицинские центры и больницы, производственные объекты и жилые дома. Кроме того, применяют люминесцентные лампы и в рекламных целях (в том числе для уличной рекламы).

Анкета «Что я знаю о компактной люминесцентной лампе?» 1. КЛЛ экономят электроэнергию. 1) Да 2) Нет 2. Компактные люминесцентные лампы вредные, потому что в них присутствует высокотоксичная ртуть. 1) Да 2) Нет 3. Срок службы компактных люминесцентных ламп превышает срок службы обычной лампы. 1) Да 2) Нет 4. КЛЛ дорого стоят, потому такие лампы не окупаются. 1) Да 2) Нет 5. Энергосберегающие лампы можно выбрасывать как обычный мусор. 1) Да 2) Нет 6. Компактные люминесцентные лампы очень быстро теряют световой поток, то есть начинают хуже светить. 1) Да 2) Нет 7. При небольших перепадах напряжения лампы сразу перегорают. 1) Да 2) Нет 8. В свете энергосберегающих ламп окружающие предметы кажутся синими и неживыми. 1) Да 2) Нет 9. Использование энергосберегающих ламп способствует уменьшению загрязнения окружающей среды. 1) Да 2) Нет




История электрического освещения началась в 1870 году с изобретения лампы накаливания. Первым предком лампы дневного света была лампа Генриха Гейсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго Томас Эдисон показал люминесцентное свечение.





В 1901 году Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет сине-зелёного цвета, и таким образом была непригодна в практических целях. Однако, ее конструкция была очень близка к современной, и имела намного более высокую эффективность, чем лампы Гейсслера и Эдисона.


В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбужденной плазмой в более однородно бело- цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.





Холодный запуск Холодный запуск - при этом лампа зажигается сразу после включения. Такую схему лучше использовать в случае, если лампа включается и выключается редко, так как режим холодного пуска более вреден для электродов лампы. Горячий запуск Горячий запуск - с предварительным прогревом электродов. Лампа зажигается не сразу, а спустя 0,5-1 с, зато срок службы увеличивается, особенно при частых включениях и выключениях.


Энергосберегающая лампа при включении не сразу горит в полную яркость и начальная яркость очень сильно зависит от окружающей температуры. Благодаря стабилизатору тока лампы, являющегося частью ЭПРА, компактные люминесцентные лампы могут работать при пониженном и повышенном напряжении. КЛЛ выделяет в пять-шесть раз меньше тепла, чем аналогичная ЛН, а температура колбы не превышает 50– 60°С Это снимает проблему пожароопасности.





Свет энергосберегающей лампы зависит от выбора цветовой температуры и индекса передачи цвета лампы. Большинство энергосберегающих ламп представлено в трех цветовых температурах: 2700 К (желтый свет, как в лампах накаливания мягкий свет), 4200 К (мягкий белый свет – яркий свет), 6400 К (насыщенный белый свет – холодный свет).





Лампы будущего Энергосбережение светодиодные лампы в 5 раз экономичнее энергосберегающих компактных люминесцентных ламп. При световой отдаче 60 Вт, потребление всего 2,5 Вт. Срок службы светодиода до часов! Это в 10 раз больше срока службы люминесцентной лампы. Прочность и стойкость к механическому воздействию и вибрации корпус светодиодной лампы изготовлен из небьющегося пластика и алюминия. Экологическая безопасность, так как лампы не содержат ртути и каких либо вредных веществ. Светодиод низковольтный электроприбор, который почти не нагревается, а значит электро- и пожаробезопасен.








1. Ультрафиолетовое излучение от КЛЛ может вызвать раздражение кожи. В ЛЛ первичное ультрафиолетовое излучение преобразуется в видимый свет посредством люминофора. При этом около 1% УФ пробивается наружу, что обычно не представляет проблемы. Однако, КЛЛ, применяемые в настольных светильниках, находятся так близко от человека, что пренебрегать УФ-лучами уже нельзя. При длительном воздействии они могут вызвать раздражение кожи, обострить имеющиеся кожные заболевания и спровоцировать новые.





2. Энергосберегающие лампы вредны для глаз. Сам по себе встроенный в лампу балласт обеспечивает частоту разрядов кГц - это тысяч раз за секунду, что уже совершенно незаметно для глаз. В добавок ко всему практически в каждой КЛЛ имеется конденсатор, который дополнительно обеспечивает работу лампы без мерцания. Освещение воспринимается приятным и спокойным, зрительный комфорт улучшается. Свет распределяется мягче и равномернее, чем у ламп накаливания. Это объясняется тем, что в лампе накаливания свет идет только от вольфрамовой спирали, а энергосберегающая лампа светится по всей своей площади.


3. Энергосберегающие лампы вредные, потому что в них присутствует высокотоксичная ртуть. Энергосберегающие лампы действительно наполнены парами ртути. Проникновение ртути в организм чаще происходит именно при вдыхании ее паров, не имеющих запаха, с дальнейшим поражением нервной системы, печени, почек, желудочно-кишечного тракта. 160 раз. В стандартном помещении без проветривания, например, зимой, из-за повреждения одной энергосберегающей лампы возможно кратковременное превышение предельно допустимой концентрации ртути более чем в 160 раз. Однако в рабочем герметичном состоянии никакого вреда для здоровья и окружающей среды такие лампы не несут.


Соединения ртути в люминесцентных лампах опасней ртути металлической, так как основная часть ртути в энергосберегающих лампах, находится в виде паров. Специалисты советуют то место, где разбилась лампа, обработать раствором перманганата калия, хлорным железом или же засыпать серой, чтобы связать ртуть. И хорошенько проветрить комнату, чтобы избавиться от вредных испарений.


Amalgam. Ведущие производители выпускают КЛЛ, произведенные с применением технологии Amalgam. Принцип основан на использовании не ртути в чистом виде, а амальгамы сплавов ртути. Применение этой технологии увеличивает стабильный срок службы лампы и, в случае если лампа разобьется, не дает парам ртути распространиться по помещению, сохраняя амальгаму в твердом виде, достаточно собрать осколки и проветрить помещение.







Люминесцентные лампы - газоразрядные источники света, которые обладают следующим принципом действия: электрическое поле, содержащееся в парах ртути (жидкий металл находится в закачанном виде в герметичной стеклянной трубке), влияет на возникновение электрического заряда вместе с УФ-излучением. С помощью люминофора, который в нанесенном виде можно найти на внутренней поверхности трубки, происходит преобразование УФ-излучения в видимый свет. Во время выбора соответствующих видов люминофора, вы можете проводить изменение цветовых характеристик ламп. Остановимся на важной характеристике - общем индексе цветопередачи (Ra). Чем больше значение Ra, тем лучше будет воспроизводиться цвет. Максимальным значением является 100. Свойство люминесцентных ламп - создание существенно более рассеянного света по сравнению с малоразмерными источниками (к которым относят лампы накаливания, галогенные и газоразрядные лампы высокого давления). Данное свойство вкупе с высокой световой отдачей позволяет использовать люминесцентные лампы для освещения помещений, имеющих большую площадь и в не нужно часто включать и выключать освещение.

Преимущества и недостатки люминесцентных ламп

Люминесцентные лампы - естественное следствие попыток развития преимуществ ламп накаливания и минимизирования их недостатков - к примеру, главными задачами были увеличение эксплуатационного срока и энергоэкономичности ламп. Они были успешно выполнены. Способ излучения и особенности конструкции люминесцентных ламп намного отличаются от этих характеристик «классических» ламп накаливания. Что касается срока службы первых, то он более чем в десять раз превышает «наработку на отказ» ламп накаливания. Не может не впечатлять и световая отдача, удивляющая значением в 75-90 лм/Вт, что в пять раз эффективнее, чем световая отдача ламп накаливания. Нельзя не сказать, что создание люминесцентных ламп и предполагалось для замены ламп накаливания в квартирах и домах.

Данные лампы имеют и свои недостатки. Сначала следует коснуться их больших габаритов: у лампы, имеющей мощность 80 Вт - полутораметровая длина! Выход - использование габаритных металлоемких светильников - ведет к тому, что световой прибор неизбежно дорожает в целом. Когда разрабатывались люминесцентные лампы, на металлоемкость изделий не обращали особого внимания, в настоящее же время дело обстоит совсем по-другому. Помимо прочего, для люминесцентных ламп нужны тяжелые и энергоемкие электромагнитные пускорегулирующие аппараты и стартеры, вследствие работы которых существенно снижается энергоэффективность. Люминесцентные лампы представляют немалую опасность, связанную с ударами током - на конденсаторах таких ламп выделяется до 3-4 сотен ватт, и даже после того, как вы выключили светильник, энергия в течение некоторого времени сохранится. Более того, люминесцентные лампы нельзя мгновенно включить. Если люминесцентные лампы более эффективны с точки зрения взрыво-, и пожаробезопасности по сравнению с лампами накаливания, то по экологическим и, особенно, по гигиеническим характеристикам первые совсем не впечатляют. Принцип действия люминесцентных ламп предполагает наличие внутри трубок ртути (30-40 мг). Неосторожное обращение с лампами может повлечь вытекание ртути, а это, в свою очередь, может негативно отразиться на здоровье человека. Люминесцентные лампы негативно влияют и на зрение людей: с их помощью создается не постоянный, а «микропульсирующий» свет - наблюдающаяся в сети частота переменного тока 50 Гц предусматривает, что люминесцентные лампы будут «перезажигаться» 100 раз в секунду. Несмотря на то, что физически мы не замечаем эту частоту, невидимое воздействие пульсации плохо влияет на наше здоровье - это выражается во вполне «прозаичных» и заметных последствиях - утомляемости, снижении активности, часто - головокружения и тошноты. Работая на промышленном предприятии, в цеху, где установлены станки и нужно хорошо различать движущиеся части механизмов или стремительно вращающиеся детали, следует быть особо внимательными - пульсация светового потока нередко является виновницей так называемого стробоскопического эффекта, вследствие которого происходит ошибочная обработка деталей, повышенный риск получения производственной травмы и, порой, угроза для жизни. Поэтому люминесцентные лампы не должны использоваться в рабочих зонах.

Срок эксплуатации и коммутационная прочность

Если используются электромагнитные пускорегулирующие аппараты и стартеры (ЭМПРА) и обычные стартеры тлеющего разряда, то люминесцентные лампы при большом количестве включений и выключений прослужат на порядок меньше своей нормы. Существенное снижение срока службы будет и в том случае, если ЭПРА будут включать из холодного состояния (при их использовании лампы могут запускаться мгновенно). При этом происходит немедленный переход от тлеющего разряда к температуре эмиссии, что негативно влияет на электроды - они повреждаются и, если осуществлялось частое повторное включение/выключение, срок службы люминесцентных ламп уменьшается. Во время эксплуатации приборов запуска из горячего состояния наблюдается обратная ситуация: электроды нагреваются электрическим током перед зажиганием - электроды практически защищены от повреждений. Связанные с этим задержки зажигания около 1 сек. (в зависимости от ЭПРА) являются допустимой нормой.

Температурные характеристики

На физические характеристики рассматриваемых ламп влияет температура окружающей среды. Это объясняет характерный температурный режим давления паров ртути в лампе. Низкие температуры вызывают низкое давление, вследствие этого лишь незначительное количество атомов может участвовать в излучении. Если же наблюдается очень высокая температура, высокое давление паров приводит к все возрастающему самопоглощению произведенного УФ-излучения. Спектральный состав излучения позволяет разделить все люминесцентные лампы на три категории: стандартные, улучшенной цветопередачи и специальные. Остановимся на каждом виде в отдельности.

1. В стандартных люминесцентных лампах используются однослойные люминофоры, которые позволяют улучшить различные оттенки белого света. Они широко применяются в офисах, производственных помещениях, магазинах, торговых залах;

2. В люминесцентных лампах улучшенной цветопередачи используется люминофор, имеющий три или пять слоев и обладающий высокой эффективностью. Благодаря этому появляется возможность хорошей передачи цвета разных искусственных и естественных объектов. Наиболее полная передача цветовой палитры окружающей обстановки создает более комфортные условия для восприятия. Применение таких ламп - в тех местах, в которых общее освещение должно обеспечить четкую передачу цветов и оттенков окружающих предметов (салоны мебели, магазины тканей, выставочные галереи, витрины и т.д.);

Аканчивая рассказ о новых источниках света - люми­несцентных лампах, рассмотрим, какими преимуще­ствами и недостатками они обладают по сравнению с при­вычными лампочками накаливания. Сопоставим пооче­рёдно все важнейшие свойства ламп.

Экономичность. Прежде всего сравним лампы по их экономичности, т. е. по тому, какое количество света они дают при одинаковом расходе энергии. Образцом сравнения возьмём такой источник, который всю потреб­ляемую энергию отдаёт полнвстью в виде излучения квантов с энергией 2,23 э-в, то есть квантов, лучше всего воспринимаемых глазом. Примем экономичность такого источника за единицу.

Мы уже говорили, что качество такого источника нас не удовлетворяет. С этой точки зрения наилучшим явился бы источник, дающий только видимый свет, с такой про­порцией квантов разных энергий, которая имеется в «есте­ственном» белом свете. Если вычислить экономичность та­кого идеального источника, то она окажется примерно равной 0,35.

Подсчитанная таким же образом экономичность лю­минесцентных ламп равна 0,06, а лампочек накалива­ния - всего 0,02. Итак, хотя люминесцентные лампы в три раза экономичнее лампочек накаливания, они ещё очень далеки от идеального источника.

Каковы же причины потерь энергии в люминесцентных лампах, известны ли способы уменьшения этих потерь?

Подсчёты и измерения показали, что примерно две трети всей энергии, потребляемой лампой, идёт на излу­чение ультрафиолетовых квантов с энергией 4,9 и 6,7 э-в. Остальная треть идёт на нагревание электродов, на тепло, выделяющееся на стенках трубки при прохожде­нии через неё тока, а также на испускание инфракрасных квантов. На непосредственное излучение видимого света расходуется лишь немногим более одного процента энергии.

Возникающие в трубке ультрафиолетовые кванты яв­ляются основным источником её свечения, поскольку под их действием происходит возбуждение люминофора, на­несённого на стенки. Однако, как мы уже говорили, при преобразовании ультрафиолетового излучения в видимое разница между энергией ультрафиолетовых квантов и квантов видимого света превращается в тепло и практиче­ски полностью для нас теряется. Вот что является основ­ной причиной неполного использования энергии в люми­несцентных лампах. Кроме того, следует учесть потери света в слое люминофора, поглощение части ультрафиоле­товых квантов в стекле, потери энергии в катушке само­индукции и некоторые другие, менее значительные потери. В результате оказывается, что люминесцентные лампы в 5-6 раз менее экономичны, чем идеальный источник света.

Из сказанного можно заключить, что основной путь повышения экономичности люминесцентных ламп заклю­чается в более выгодном использовании возбуждающего ультрафиолетового излучения, т. е. в более благоприят­ном соотношении между энергией возбуждающих кван­тов и энергией квантов, испускаемых люминофором. Не исключена возможность и такого подбора люминофоров и газа, наполняющего трубку, при котором происхо­дил бы «размен» ультрафиолетового кванта на два ви­димых.

Разумеется, не следует пренебрегать уменьшением и других непроизводительных затрат энергии, например на­греванием электродов и теплом, выделяющимся в катушке самоиндукции.

Состав света. Благодаря большому разнообразию люминофоров можно составлять их смеси с любым же­лаемым составом света. Кроме света, очень близкого к дневному («лампы дневного света»), можно получать раз­ные оттенки белого света («лампы белого света», «лампы тёпло-белого света») и свет всевозможных цветов.

Возможность получения света любого состава является одним из главных преимуществ люминесцентных ламп по сравнению с лампочками накаливания.

Яркость. Смотреть прямо на нить лампочки нака­ливания, даже самой слабой, неприятно. Глаз быстро утомляется и теряет чувствительность. Это связано с тем, что свет излучается с очень маленькой поверхности. В све­тотехнике говорят «яркость источника велика», причём под яркостью подразумевают силу света с каждого квад­ратного сантиметра источника. Большая яркость непри­ятна и вредна для зрения.

Чтобы уменьшить яркость лампочек накаливания, при­ходится применять абажуры и колпаки, снижающие и без того низкую экономичность лампочек.

У люминесцентной лампы поверхностью излучения яв­ляется вся трубка. Поэтому яркость люминесцентных ламп в сотни раз меньше яркости лампочек накали­вания, и применять их можно даже без защитной арматуры.

Срок службы. Средний срок службы лампочки накаливания- 1000 часов. Прогорев этот срок, лампочка погибает, так как к этому времени у неё обычно перего­рает нить. Люминесцентные лампы в два-три раза более долговечны.

Кроме того, они обычно выходят из строя не сразу, а постепенно, работая всё хуже и хуже и как бы преду­преждая о необходимости замены. Сначала уменьшается поток света, который даёт лампа, затем она начинает труднее зажигаться и, наконец, совсем перестаёт рабо­тать. Сроком её службы считается не время горения до полного выхода лампы из строя, а время, в течение которого поток света уменьшается приблизительно на 20%.

Следует заметить, что срок службы лампы зависит от того, как часто она включается. При включении лампы напряжение значительно выше, чем при её горении, а это приводит к распылению электродов. Поэтому люминес­центная лампа тем долговечнее, чем дольше она каждый раз горит непрерывно.

Мелькание света. Мы знаем, что переменный ток, которым мы пользуемся для освещения, сто раз в се­кунду меняет направление. Лампочка накаливания этих перемен практически не чувствует. За время нарастания и убывания тока температура нити почти не меняется. Поэтому совсем незаметно колеблется и сила света лам­почки.

Иначе ведёт себя люминесцентная лампа. Излучае­мый ею свет к моменту прекращения тока падает почти до нуля. Остаётся лишь небольшое остаточное свечение

Люминофора. Глаз человека не замечает этого мелькания света, так как световое впечатление в глазу сохраняется несколько больше десятой доли секунды. Этого времени достаточно, чтобы свет люминесцентной лампы казался нам непрерывным.

Однако быстро движущийся предмет, освещённый лю­минесцентной лампой, как бы размножается на несколько одинаковых предметов, сдвинутых друг относительно друга. Убедиться в этом можно, быстро проведя рукой перед лампой.

Для устранения этого явления включают по две и три лампы таким образом, чтобы они гасли не одновременно. В некоторых установках применяется так называемый трёхфазный ток. В трёх проводах трёхфазного тока на­пряжение относительно четвёртого «нулевого» провода ме­няется не одновременно, а со сдвигом друг относительно друга на одну трёхсотую долю секунды.

Включив три лампы между каждым из основных про­водов и нулевым проводом (рис. 23), мы получим почти

Катушка самоиндукции

Стартер

Рис. 24. Способ включения двух ламп в обычную осветительную сеть для уменьшения мигания.

Непрерывный свет. Сначала погаснет одна лампа, вто­рая - через одну трёхсотую секунды, третья - через две трёхсотые. Через три трёхсотых, т. е. через одну сотую секунды, вновь погаснет первая и т. д.

В обычных осветительных сетях, где применяется одно­фазный переменный ток, включаются одновременно две лампы. С помощью специального соединения катушек са­моиндукции и конденсаторов (рис. 24) удаётся добиться того, чтобы каждая лампа гасла в тот момент, когда дру­гая горит всего сильнее. При двух лампах равномерность
света хотя и меньше, чем при трех, но значительно лучше, чем когда горит только одна лампа.

Влияние окружающей температуры. Одним из важнейших недостатков люминесцентных ламп является их сильная чувствительность к окружающей температуре. Лампоч­ка накаливания работает при любых температурных условиях, а люмине­сцентная лампа заметно изменяет свои свойства при понижении и при повышении температуры.

При охлаждении уменьшается плотность паров ртути. От этого сни­жается количество возникающих уль­трафиолетовых квантов и соответ­ственно ослабляется свечение люми­нофора. Дальнейшее охлаждение за­трудняет зажигание лампы, а при температуре окружающей среды око­ло нуля лампа совсем перестаёт ра­ботать. При перегреве лампы увели­чивается количество испускаемых ою инфракрасных квантов и соответст­венно снижается её экономичность.

Такая зависимость работы люми­несцентных ламп от окружающей температуры сильно сужает область их применения. Особенно сложно ис­пользовать эти лампы для уличного освещения в зимнее время. Делаются разные попытки уменьшить чувстви­тельность люминесцентной лампы к окружающей температуре. Наиболее простой способ состоит в окруже­нии её стеклянным кожухом. Воз­душная прослойка между кожу­хом и лампой помогает сохранить более постоянную температуру сте­нок лампы.

В настоящее время ведутся опыты по освещению лю­минесцентными лампами улиц Москвы и Ленинграда.

Включение и обслуживание ламп. Вклю­чение в осветительную сеть лампочки накаливания весьма
просто. Универсальный винтовой патрон и выключатель - вот и все вспомогательные устройства, необходимые для этого. А для того чтобы присоединить к сети люминесцент­ную лампу, нужны стартёр, катушка самоиндукции и конденсатор.

Заменить вышедшую из строя лампу можно только лампой такой же мощности, иначе потребуется другая катушка самоиндукции и другой конденсатор. Кроме того, так как размеры ламп разной мощности различны, то и арматура с определённым расстоянием между патронами годится только для определённых ламп. Большая длина лампы, полезная с точки зрения уменьшения её яркости поверхности, в ряде случаев может оказаться неудобной для установки.

Обслуживание люминесцентных ламп также сложнее, чем лампочек накаливания, в частности, возможны нару­шения нормальной работы лампы (затруднённое зажига­ние, мигание и другие), связанные не с выходом из строя лампы, а с порчей какого-либо из вспомогательных при­боров.

На смену лампам накаливания, производство которых постепенно прекращается, пришли экономичные энергосберегающие лампы накаливания люминесцентного типа, характеризующиеся низким потреблением тока и компактными размерами.

Стоят они дороже устаревших классических вариантов, но эта разница в цене компенсируется высокой эффективностью, увеличенным сроком службы и другими достоинствами.

Преимущества люминесцентных ламп

В отличие от эксплуатационного ресурса обычных лампочек, который составляет 1000 часов, у источников света нового образца срок эксплуатации может составлять 4000-12000 часов непрерывной работы.

Создавая такой же мощный световой поток, как 100-ваттная лампа накаливания, люминесцентная энергосберегающая лампа потребляет только 20 ватт мощности, таким образом, добивается пятикратная экономия.

При работе она нагревается в 2 раза слабее, за счет оптимального преобразования тока в световое излучение, что позволяет использовать такие приборы в местах и конструкциях, отличающихся повышенной чувствительностью к нагреву.

Коснувшись поверхности стеклянной колбы лампы нового образца, об нее трудно обжечься, чего нельзя сказать о поверхности лампы накаливания, которая во включенном состоянии может быть очень горячей.

Срок службы конкретной энергосберегающего освещающего устройства с люминесцентным принципом действия указывается на упаковке производителем.


Но соответствие данного показателя реальным характеристикам зависит от правильности условий применения электроприбора.

ЭКОНОМИТЕЛЬ ЭЛЕКТРОЭНЕРГИИ! Экономия достигается за счет нормализации структуры электрического потока, динамичного поглощения или освобождения реактивной мощности, сокращения потерь на сопротивление, устранения скачков напряжения в сети. ПОДРОБНОСТИ НА БЛОГЕ ХОРОШЕГО ЭЛЕКТРИКА >>> .

Вкручивая лампочку в патрон, ее необходимо держать пальцами только за специально предназначенную для этого пластмассовую часть.

Стенки из тонкого стекла достаточно хрупкие, и даже при небольшом давлении на их поверхность, могут покрыться невидимыми глазу микротрещинами, существенно сокращающими срок службы.

Не допускается совместное их использование с устройствами регулировки яркости, за счет отсутствия в их составе цепи, а также с выключателями, оснащенными светодиодом, провоцирующим заметную разницу в сопротивлениях, приводящую к миганию лампы и ее быстрому выходу из строя.

Принцип действия

Принцип действия люминесцентной лампы заключается в создании светового излучения в результате попадания на поверхность люминофора незаметных глазу ультрафиолетовых волн.

В свою очередь, ультрафиолет вырабатывается в момент, когда электрический разряд между двумя контактами проходит сквозь пары ртути, находящиеся внутри колбы.


Следовательно, поскольку прибор содержит в себе некоторое количество этого опасного жидкого металла, обращаться с ним нужно предельно осторожно, не допуская нарушения целостности стеклянных стенок.

Если лампочка случайно разбилась, производится самостоятельная очистка места происшествия с помощью слабого раствора марганцовки с последующим тщательным проветриванием помещения.


Запрещается утилизация вышедших из строя или разбитых ламп с бытовыми отходами.

Производятся энергосберегающие лампы, как множеством зарубежных компаний, так и несколькими отечественными.Представленный в магазинах модельный ряд действительно разнообразен.

Разные модели отличаются не только ценой и изготовителем, но и по некоторым другим параметрам.

Например, по форме они могут быть традиционными шарообразными, имеющими вид свечи, спиралевидными, U-образными.


Отличаются они и габаритами колбы, что позволяет с легкостью подобрать вариант, подходящий для того или иного светильника, независимо от его внутреннего размера.


В любом случае, они подходят для использования со стандартным патроном, который не требует замены или доработки.

ЛУЧШАЯ ЗАЩИТА ДЛЯ ВАШЕГО ДОМА И ПОДВАЛА! Начался сезон, когда грызуны массово возвращаются в теплые места там, где они смогут пережить холодную зиму, а это дома, дачи, подвалы с запасами продовольствия. Нужна эффективная защита от непрошенных гостей и она существует – это универсальный отпугиватель грызунов и насекомых. ТУТ МНЕНИЯ ЛЮДЕЙ ОБ УСТРОЙСТВЕ >>> .

Шкала Кельвина

В отличие от традиционных ламп накаливания, современные энергосберегающие лампы имеют разную цветовую температуру, измеряющуюся по шкале Кельвина, обозначающуюся количественным показателем, на конце которого находится литера K.


Наиболее близкими по восприятию для человеческого глаза являются изделия с цветовой температурой в 2700 K .

Холодного света, актуального для офисных и промышленных помещений, получается добиться при цветовой температуре в 6400 K .

Дневной белый свет, создающий наиболее комфортные условия для чтения, создается при покупке ламп с цветовой температурой в 4200 K .

Холодный свет нередко применяется дизайнерами при создании интерьеров в стиле хай-тек.

ЭТО МОЖЕТ БЫТЬ ИНТЕРЕСНЫМ.