Специфика и механизм токсического действия вредных веществ. Предмет токсикологии Фактор токсичности определение

Токсичность проявляется и может быть изучена только в процессе взаимодействия химического вещества и биологической системы (клетки, изолированного органа, организма, популяции).

Формирование и развитие реакций биосистемы на действие токсиканта, приводящих к её повреждению (т.е. нарушению её функций, жизнеспособности) или гибели называется токсическим процессом.

Механизмы формирования и развития токсического процесса, его качественные и количественные характеристики, прежде всего, определяются строением вещества и его действующей дозой (рис. 1).

Рис. 1. Основные характеристики токсического действия

Однако формы, в которых токсический процесс проявляется, несомненно, зависят также от вида биологического объекта, его свойств.

Внешние признаки называются проявлениями токсического процесса. В ряде упомянутых выше определений токсикологии просматривается представление, согласно которому единственной формой проявления токсического процесса является интоксикация (отравление). Интоксикация действительно основная и наиболее изученная, однако далеко не единственная форма.

Проявления токсического процесса прежде определяются уровнем организации биологического объекта, на котором токсичность вещества (или последствия его токсического действия) изучается:

§ клеточном;

§ органном;

§ организменном;

§ популяционном.

Если токсический эффект изучают на уровне клетки (как правило в опытах in vitro), то судят о цитотоксичности вещества. Цитотоксичность выявляется при непосредственном действии соединения на структурные элементы клетки.

Токсический процесс на клеточном уровне проявляется:

· обратимыми структурно-функциональными изменениями клетки (изменение формы, сродства к красителям, количества органелл и т.д.);

· преждевременной гибелью клетки (некроз, апоптоз);

· мутациями (генотоксичность).

Если в процессе изучения токсических свойств веществ исследуют их повреждающее действие на отдельные органы и системы , выносится суждение об органной токсичности соединений. В результате таких исследований регистрируют проявления гепатотоксичности, гематотоксичности, нефротоксичности и т.д., то есть способность вещества, действуя на организм, вызывать поражение того или иного органа (системы). Органотоксичность оценивают и исследуют, прежде всего, в процессе изучения свойств (биологической активности, вредного действия) новых химических веществ; в процессе диагностики заболеваний, вызванных химическими веществами.

Токсический процесс со стороны органа или системы проявляется:

· функциональными реакциями (миоз, спазм гортани, одышка, кратковременное падение артериального давления, учащение сердечного ритма, нейтрофильный лейкоцитоз и т.д.);

· заболеваниями органа;

· неопластическими процессами.

Токсическое действие веществ, регистрируемое на популяционном уровне, может быть обозначено как экотоксическое. Экотоксическое действие, как правило, исследуют врачи профилактики либо в порядке текущего планового надзора, либо в процессе заданных исследований.

Экотоксичность на уровне популяции проявляется:

· ростом заболеваемости, смертности, числа врожденных дефектов развития, уменьшением рождаемости;

· нарушением демографических характеристик популяции (соотношение возрастов, полов и т.д.);

· падением средней продолжительности жизни членов популяции, их культурной деградацией.

Особый интерес для врача представляют формы токсического процесса, выявляемые на уровне целостного организма. Они также множественны, и могут быть классифицированы следующим образом:

Ø Интоксикации - болезни химической этиологии;

Ø Транзиторные токсические реакции - быстро проходящие, не угрожающие здоровью состояния, сопровождающиеся временным нарушением дееспособности (например, раздражение слизистых оболочек);

Ø Аллобиотические состояния - наступающее при воздействии химического фактора изменение чувствительности организма к инфекционным, химическим, лучевым, другим физическим воздействиям и психогенным нагрузкам (иммуносупрессия, аллергизация, толерантность к веществу, астения и т.д.);

Ø ­Специальные токсические процессы - беспороговые, имеющие продолжительный скрытый период процессы, развивающиеся у части экспонированной популяции, при действии химических веществ, как правило, в сочетании с дополнительными факторами (например, канцерогенез).

Интоксикация (отравление)

Из всех форм проявления токсического процесса наиболее изученной и значимой для врача является интоксикация. Механизмы формирования и особенности течения интоксикаций, зависят от строения ядов, их доз, условий взаимодействия с организмом и т.д. Однако можно выделить некоторые общие характеристики этой формы токсического процесса.

1. В зависимости от продолжительности взаимодействия химического вещества и организма интоксикации могут быть острыми, подострыми и хроническими.

Острой называется интоксикация, развивающаяся в результате однократного или повторного действия веществ в течение ограниченного периода времени (как правило, до нескольких суток).

Подострой называется интоксикация, развивающаяся в результате непрерывного или прерываемого во времени (интермитирующего) действия токсиканта продолжительностью до 90 суток.

Хронической называется интоксикация, развивающаяся в результате продолжительного (иногда годы) действия токсиканта.

Не следует путать понятие острой, подострой, хронической интоксикации с острым, подострым, хроническим течением заболевания, развившегося в результате контакта с веществом. Острая интоксикация некоторыми веществами (иприты, люизит, диоксины, галогенированные бензофураны, паракват и др.) может сопровождаться развитием длительно текущего (хронического) патологического процесса.

2. Периоды интоксикации.

Как правило, в течение любой интоксикации можно выделить четыре основных периода: период контакта с веществом, скрытый период, период разгара заболевания, период выздоровления. Иногда особо выделяют период осложнений. Выраженность и продолжительность каждого из периодов зависит от вида и свойств вещества, вызвавшего интоксикацию, его дозы и условий взаимодействия с организмом.

3. В зависимости от локализации патологического процесса проявления интоксикации могут быть местными и общими.

Местными называется проявления, при которых патологический процесс развивается непосредственно на месте аппликации яда. Возможно местное поражение глаз, участков кожи, дыхательных путей и легких, различных областей желудочно-кишечного тракта. Местное действие может проявляться альтерацией тканей (формирование воспалительно-некротических изменений - действие кислот и щелочей на кожные покровы и слизистые; ипритов, люизита на глаза, кожу, слизистые желудочно-кишечного тракта, легкие и т.д.) и функциональными реакциями (сужение зрачка при действии фосфорорганических соединений на орган зрения).

Общими называются проявления, при которых в патологический процесс вовлекаются многие органы и системы организма, в том числе удаленные от места аппликации токсиканта. Причинами общей интоксикации, как правило, являются: резорбция токсиканта во внутренние среды, резорбция продуктов распада пораженных покровных тканей, рефлекторные механизмы.

Если какой-либо орган или система имеют низкий порог чувствительности к токсиканту, в сравнении с другими органами, то при определенных дозовых воздействиях возможно избирательное поражение именно этого органа или системы. Вещества, к которым порог чувствительности того или иного органа или системы значительно ниже, чем других органов, иногда обозначают как избирательно действующие. В этой связи используют такие термины как: нейротоксиканты, нефротоксиканты, гапатотоксиканты, пульмонотоксиканты и т.д.

В большинстве случаев отравления носят смешенный характер, и сопровождаются признаками как местного, так и общего плана.

4. В зависимости от интенсивности воздействия токсиканта (характеристика, определяющаяся дозо-временными особенностями действия) интоксикация может быть тяжелой, средней степени тяжести и легкой.

Тяжелая интоксикация – состояние, угрожающее жизни. Крайняя форма тяжелой интоксикации - смертельное отравление.

Интоксикация средней степени тяжести - болезнь, при которой возможно длительное течение, развитие осложнений, необратимые повреждение органов и систем, приводящее к инвалидизации или обезображиванию пострадавшего.

Легкая интоксикация - заканчивается полным выздоровлением в течение нескольких суток.

Концентрация токсикантов в компонентах биоты в силу аналитической доступности и возможности простого количественного выражения эффекта часто рассматривается в качестве экотоксикологического ответа на загрязнение природной среды. Однако судьба биологической системы в конечном счете определяется не тем, каковы уровни ее загрязненности, а тем, насколько выражены отклонения основных популяционных и биоценотических характеристик, обусловленных токсической нагрузкой.

Несмотря на то что до настоящего времени единого понятия "популяция " не существует, мы будем придерживаться того мнения, что в качестве таковой следует рассматривать устойчивую группу особей, объединенных территориально, имеющих единый жизненный цикл, а применительно к организмам с перекрестным оплодотворением - единый генофонд, в какой-то мере репродуктивно изолированную от других аналогичных группировок и обладающую способностью к гомеостазу в изменяющихся условиях среды. В качестве экотоксикологической реакции систем популяционного уровня рассмотрим эффекты прямого токсического влияния и эффекты, опосредованные (модифицированные) популяционными механизмами и природной средой.

Эффекты прямого токсического действия . Очевидно, что признаки поражения, обусловленные накоплением токсикантов в организмах млекопитающих и подробно рассматриваемые в рамках токсикологии, должны иметь место не только у млекопитающих из природных популяций, но и с определенной спецификой в других объектах биоты. В наибольшей степени такие эффекты прямого токсического влияния могут быть выделены на молекулярном и клеточно-тканевом уровнях функционирования биологических систем. Это связано с тем, что при наличии мощных эндогенных гомеостатических механизмов суборганизменные показатели в наименьшей степени подвержены влиянию изменяющихся условий обитания. Важно и то, что в настоящее время имеются хорошо разработанные количественные методы диагностики таких отклонений.

Одним из наиболее четких показателей прямого токсического действия являются биохимические изменения, в наибольшей степени специфичные к воздействию конкретных токсикантов. Из токсикологии известно, что поступление в организмы теплокровных животных многих ксенобиотиков стимулирует генерацию активных форм кислорода. При нарушении или перегрузке молекулярных механизмов инактивации этих радикалов возможно усиление процессов свободнорадикального окисления и накопление продуктов перекисного окисления липидов.

Блокировка этих процессов осуществляется за счет эндогенных антиоксидантов - витаминов А и Е. Накопление продуктов перекисного окисления липидов теплокровными в условиях токсического загрязнения среды связано с этим истощением ресурсов эндогенных протекторов. Следствием этого является нарушение структуры биомембран и ферментных систем метаболизма ксенобиотиков, т.е. проявление признаков интоксикации. Наиболее четко биохимические нарушения можно диагностировать у животных, постоянно обитающих в условиях токсического воздействия.

Показано, например, что в печени птенцов большой синицы в зонах загрязнения интенсивность перекисного окисления липидов почти в два раза превышает аналогичные показатели на чистых участках. Аналогичная картина - у мухоловки-пеструшки. Отмеченные уровни хорошо коррелируют с накоплением свинца, цинка, меди в скелете птенцов. Для этих же видов отмечено достоверное, почти двукратное снижение уровней витаминов Е и А в печени птенцов на загрязненных участках. Последние показатели также коррелируют с содержанием тяжелых металлов в организмах.

Оценивая подобные эффекты прямого токсического воздействия , необходимо иметь в виду, что обсуждаемые показатели регистрируются у организмов, обитающих в природных условиях. Это значит, что отдельные особи с максимальным проявлением признаков интоксикации, не удовлетворяющие по этой причине жестким требованиям среды обитания, могут элиминироваться из популяции. В отличие от лабораторных или виварных экспериментов анализируемые выборки в этом случае отражают результат отбора, обусловленного как механизмами внутрипопуляционными, так и качеством среды обитания. В этом отношении цитируемые данные наиболее удачны для птенцов, поскольку упомянутые факторы отбора в гнездовой период у птиц выражены в наименьшей степени.

Имеются многочисленные сведения , полученные в том числе и на других объектах, согласно которым возможна диагностика самых разнообразных признаков поражения (биохимических, физиологических, функциональных и др.), вызванных прямым токсическим влиянием. Однако в любом случае природная среда выступает в качестве своеобразного фильтра, корректирующего эти показатели. Именно поэтому в отличие от лабораторных экспериментов в природных условиях при равных с лабораторными уровнях токсической нагрузки, определяемой по содержанию токсичных веществ в объектах окружающей среды, часто не удается диагностировать у животных наличие специфических прямых токсических признаков.

Приведем еще пример , иллюстрирующий сказанное. Известно, что большинство загрязнителей природной среды ведет к проявлению у животных четко выраженных признаков поражения как периферической, так и ЦНС. Нейротоксические проявления наблюдаются, как правило, при низких уровнях воздействия, предшествующих другим клиническим признакам. Проявляющиеся при этом определенные неиропсихические сдвиги, выраженные в изменении скорости реакции на внешний раздражитель и поведения животных, ведут не только к изменению зоосоциального статуса животного, но и к неадекватной реакции зверьков на опасность. Это показано на оленьих хомячках, когда животные, отравленные дильдрином, резко снижали реакцию на появляющуюся тень хищника. Уже поэтому такие животные должны преимущественно элиминироваться из популяции.

Несмотря на очевидную в этих случаях прямую обусловленность токсических эффектов поступлением загрязнителей в организмы животных, обсуждаемые показатели нельзя рассматривать в качестве эффектов надорганизменного уровня, т.е. строго говоря, эффектов экотоксикологических. Скорее другое. Экотоксикологический ответ системы будет определяться не столько выраженностью биохимических или иных отклонений, сколько вызываемыми ими изменениями структуры популяции за счет, например, снижения численности наиболее чувствительных к токсикантам групп организмов.

Токсичность веществ из группы зависит от их химического состава, количества, воздействующего на организм, пути поступления, механизмов и продолжительности действия, условий внешней среды, чувствительности, исходного состояния организма и ряда других факторов.

Виды токсичности

Разделяют острую и хроническую токсичность веществ, определяя, таким образом, их действие на организм и опасность для человека. В защите растений в основном используются , обладающие острой токсичностью, которая обеспечивает быстрый эффект в отношении вредных организмов. В специальных случаях, когда применение больших количеств представляет опасность для полезных организмов и человека, используют их хроническую токсичность, вводя в состав приманок малые доли отравляющих веществ и обновляя эти приманки каждый день в течение недели (например, применение антикоагулянтов крови - ).

Факторы, влияющие на токсичность

Для различных организмов мерой токсичности является доза - количество отравляющего вещества на единицу измерения объекта, вызывающее определенный эффект. Ее выражают в единицах массы по отношению к единице массы обрабатываемого объекта (мкг/г, мг/кг), объема (концентрация в мкг/мл, мг/л) или на объект (мкг/особь). При оценке токсичности того или иного вещества всегда учитывается общий биологический закон развития живых существ: жизнеспособность вида определяется степенью гетерогенности его популяции. Исходя из этого, оценка проводится с использованием определенного числа организмов и по некому усредненному показателю. Наиболее часто применяется доза, вызывающая 50%-ный эффект (угнетение какого-то жизненно важного процесса) или 50%-ную гибель подопытных организмов. В первом случае такую дозу обозначают, как эффективная доза ЕД 50 , во втором это называется смертельной, или СД 50 или 50 . Данные показатели также используются для определения степени устойчивости популяции к и избирательности действия на определенные виды организмов.

В соответствии с современными представлениями о ядов, любой химический агент после поступления в организм должен войти во взаимодействие с определенным химическим рецептором, который ответствен за прохождение жизненно важной биохимической реакции. Такой рецептор называют «местом действия». Токсичность вещества для организма будет зависеть от того, какое количество яда достигло места действия, насколько сильно и на какое время блокируется биохимическая реакция, а также каково значение этой реакции для жизнедеятельности организма. По этой причине любой фактор, который влияет на процессы поступления вещества в организм, его «поведения» в нем и взаимодействие с рецептором, вызывает изменение токсичности.

Также токсичность вещества для живого организма зависит от дозы токсиканта и продолжительности экспозиции. В определенном диапазоне с увеличением дозы и экспозиции пропорционально возрастает эффект.

Длительность экспозиции в наибольшей степени зависит от химической, термической стойкости и фотостабильности, а также от летучести вещества. Химически стойкие и малолетучие вещества долго сохраняются на растениях и в почве. Эффективность и продолжительность действия синтетических пиретроидов во многом определяется их фотостабильностью.

Из условий внешней среды наибольшее влияние на токсичность оказывает температура . Под ее воздействием возможно изменение активности как самого вещества, так и реакции организма. С увеличением температуры повышаются потери с обработанной поверхности, но токсичность его может одновременно возрастать, например, при образовании более токсичных веществ (переход тионовых изомеров в тиоловые). При этом, в условиях оптимальной температуры организм становится более чувствительным к токсическому веществу из-за усиления процессов обмена веществ.

Все почвенные факторы, которые влияют на сохранность в почве, будут иметь влияние на токсичность препаратов. С увеличением содержания органического вещества и илистых частиц в почве резко возрастает сорбция почвенным комплексом. В результате уменьшается количество вещества в почвенном растворе, снижается его эффективность и, как следствие, норму расхода приходится увеличивать.

Токсичность яда также зависит от скорости активной или пассивной диффузии веществ через различные ткани. Чем выше скорость проникновения, тем больше ядовитость соединения, поскольку уменьшаются возможности для его и депонирования. Во многих организмах также есть внутренние структурные барьеры, препятствующие проникновению токсических веществ к жизненно важным центрам.

Токсичность яда, проникшего к месту действия, зависит от степени сходства молекулы токсина с молекулой рецептора. Необходимость подобного сходства молекул подтверждается тем, что токсичность многих веществ зависит от структуры молекулы и пространственного расположения атомов. Инсектицидная активность синтетических пиретроидов зависит от количества активных стереоизомеров в препарате. Такая зависимость отмечена у фунгицидов из группы триазолов (металаксил), у - производных арилоксифеноксипропионовой кислоты и др.

Показатели токсичности

Как уже говорилось, универсальной мерой токсичности для вредных организмов является доза отравляющего вещества - количество препарата, вызывающего определенный эффект. Она обычно выражается в единицах массы в отношении к единице массы вредоносного организма (в миллиграммах на килограмм).

Показатели токсичности обозначают буквенными символами с указанием величины эффекта:

  • СД (смертельная доза) = (

Патологическое (от греч. patos - страдание, болезнь) состояние, развивающееся вследствие взаимодействия вредного вещества (яда) с организмом, называется интоксикацией, или отравлением.

Интоксикация (токсикоз) - патологическое состояние, связанное с нарушением химического гомеостаза вследствие взаимодействия различных биохимических структур организма с токсическими веществами экзогенного или эндогенного (формируемого внутри организма) происхождения.

Термином «интоксикация» обозначают весь процесс развития токсикоза с самых начальных его симптомов до полной клинической картины заболевания, содержание которой зависит от физиологической роли основных рецепторов токсичности, т. е. определенных биохимических структур, с которыми избирательно взаимодействует данный токсикант (яд).

В соответствии с принятой в России терминологией экзогенные интоксикации, вызванные ксенобиотиками, обычно называют отравлением в отличие от эндогенных интоксикаций, связанных с накоплением в организме токсических веществ собственного метаболизма (аутоинтоксикация).

Токсичность - свойство вещества, вызывающего нарушение биохимических процессов и физиологических функций организма.

Токсичность характеризуется количеством вещества, вызывающим поражающий эффект, и характером токсического действия на организм человека или животного. Под характером токсического действия подразумевается:

  • 1. Механизм токсического действия.
  • 2. Характер патофизиологических процессов и основных симптомов поражения, возникших после поражения биомишени.
  • 3. Динамика развития токсического действия во времени.
  • 4. Другие стороны токсического действия вещества на организм.

Существуют три понятия токсической дозы:

  • 1. Терапевтическая лечебная доза - доза вещества, вызывающая определенный лечебный эффект.
  • 2. Токсическая доза - доза вещества, вызывающая патологические изменения в организме, не приводящие к летальному исходу.
  • 3. Смертельная (летальная) доза - доза вещества, которая вызывает гибель организма.

Токсичность характеризуется дозой вещества, вызывающей определенную степень отравления. Если человек массой G (кг) вдыхает воздух с концентрацией С (мг/л) в нем вредного вещества (яда) в течение времени t (мин) при интенсивности дыхания V (л/мин), то удельная поглощенная доза вредного вещества (количество вредного вещества, попавшее в организм), D ya (мг/кг), будет равна

Немецкий химик Ф.Габер предложил упростить это выражение. Он сделал допущение, что для людей или конкретного вида животных, находящихся в одинаковых условиях, отношение V/G постоянно, тем самым его можно исключить при характеристике ингаляционной токсичности вещества, и получил выражение T=Ct (мгх мин/л).

Произведение Ct Габер назвал показателем (коэффициентом) токсичности и принял его за постоянную величину (см. гл. 3.7).

При ингаляционных отравлениях доза D = Ct, где С - концентрация паров или аэрозоля в мг/м 3 , t - время вдыхания в мин.

При поражении другими путями (через желудочно-кишечный тракт, кожу, внутривенно, внутримышечно и т. д.) доза D оценивается количеством вещества в мг на 1 кг живой массы (при поражении кожи - в мг/см 2).

Различают параметры токсичности:

  • 1. Среднесмертельные (среднелетальные) дозы, вызывающие гибель 50 % подопытных животных при определенном способе введения:
    • а) CZ, 5 o(JlK 5 o) - при ингаляционном отравлении;
    • б) /)1 5 о(ЛД 5 о) - при других видах воздействия (внутрь, на кожу и т. д., кроме ингаляции).
  • 2. Абсолютные смертельные (летальные) дозы, вызывающие гибель 100 % подопытных животных:
    • а) CLioo(JIKioo) - при ингаляционном отравлении;
    • б) ДГюоЩДюо) - при других видах воздействия.

Токсичными считаются все те вещества, у которых ЛД мала. Так, у

классических ядов - цианистого калия и стрихнина ЛД юо составляет 10 и 0,5 мг/кг. Намного меньше ЛД у боевых отравляющих веществ (зарин, заман и др.) и некоторых природных токсинов растительного происхождения (токсины кураре, ботулизма и дифтерии).

  • 3. Пороговые дозы , вызывающие явные, но обратимые изменения показателей жизнедеятельности организма:
    • а) РСю(ПКю) - при ингаляционном отравлении;
    • б) РДо(ПДю) - при других видах воздействия.

Цифра в индексе (0) показывает вероятность (в %) появления признаков отравления. Пороговые дозы определяют на кроликах (при ингаляции), крысах (по изменению картины крови) и людях (по запаху, действию на биоэлектрическую активность головного мозга). Вредное воздействие химических веществ на человека всегда начинается с пороговой концентрации.

Токсодоза - количество токсичного вещества. Токсичность =1/ток- содоза.

С целью количественной оценки токсичности в токсикологии используют определенные категории токсических доз (табл. 2.1)

Таблица 2.1

Токсодозы при различных путях поступления веществ в организм

Токсоэффекты

Внутривенно через органы пищеварения

Через органы дыхания

1. Медианная смертельная

ld 50

Гибель 50 % пораженных

2. Абсолютная смертельная

ld 95

Гибель 90-100 % пораженных

3. Максимальная несмертельная

ld 5

Гибель 0-10 % пораженных

4. Медианная, выводящая из строя

Выведение из строя 50 % пораженных

5. Пороговая медианная

Начальные симптомы поражения у 50 % пострадавших

6. Предельно допустимая

ПДК (пред, допуст. кол-во дозы)

ПДК(пред. допуст. конц.)

Отсутствие симптомов поражения

Для количественной оценки токсичности веществ используются величины медианно-эффективных токсодоз (ЕД 50), вызывающие определенные эффекты у 50 % подопытных животных (пораженных). ЕД 50 - первые буквы слов Effective dose - эффективная доза. В случае веществ смертельного действия, когда «эффект» оценивается по гибели животных, используются величины LD 50 и IC/ 50 (L от слова Letholis - смертельная), а при оценке выведения из строя - величины Ю 50 и ICts о (I от слова Incapacitating - выводящая из строя) и т. д. (см. табл. 2.1).

LD 5 o и LCt 5 о - является величиной той средней дозы, после поступления которой в желудок, брюшную полость, на кожу в течение трех суток наступает гибель 50 % подопытных животных. Иногда для определения LD 50 и LCtso подопытных животных наблюдают в течение не трех, а 14 суток.

Медианно-эффективные дозы являются статистически более достоверными по сравнению с другими категориями токсодоз (ED 5 , ED 95 и др.) и в этом отношении более правильно указывать, например, дозу, равную 2ED 50 , чем ED m .

При определении EDso(LDso) исследуются зависимости эф- фекг-дозы по экспериментальным данным, которые анализируются с помощью статистических методов, как правило, с использованием пробит-анализа.

Использование пробит-метода основано на двух положениях:

  • 1. Вероятности распределения биоответов в токсикологических и фармакологических экспериментах обычно соответствуют закону логарифмически нормального распределения.
  • 2. Вероятности биоответов оцениваются с использованием величин пробитов (а не процентов, как это часто делается в практической работе токсикологов); пробиты (от англ, probability unites) - вероятностные величины, предложенные Блиссом и Гэддемом (отсюда и название: пробит-метод). Использование пробитов позволяет анализировать зависимости биоответов от логарифмов доз в линейном виде:

пробиты = а + big D в широком интервале биоответов от 0,1 до 99,9 % (см. табл. 2.2 и 2.3).

Коэффициенты уравнения «а» и «Ь», по существу, характеризуют чувствительность животных к данному веществу при данном виде аппликации. Значения пробитов по наблюдаемым в эксперименте биоответам находят по таблицам или рассчитывают аналитически.

Статистическая обработка экспериментальных данных проводится на вычислительных машинах по специальным программам (Финни и др.). При этом рассчитываются среднеквадратичные ошибки и доверительные интервалы EDsq(LD 5Q) и других категорий токсодоз. Значения тангенсов углов наклона пробит-линий (b ), по существу, определяют отношения различных категорий токсодоз.

Таблица 2.2

Перевод процентов в пробиты

Таблица 2.3

Значения коэффициентов а, b и п в формуле для случая смертельного поражения

Вещество

Акролеин

Акролонитрит

Угарный газ

Четыреххлористый углерод

Формальдегид

Соляная кислота

Цианистоводородная кислота

Фтористоводородная кислота

Сероводород

Бромистый метил

Метилизоцианат

Оксид азота

Оксид пропилена

Диоксид серы

Таким образом, значения тангенсов углов наклона пробит-линий, которые отражают изменения вероятности эффектов с изменением величин токсодоз (логарифма токсодоз), наряду с медианными токсодозами, имеют важное значение при оценке токсического действия вещества.

Например, в случае аварии на химически опасном объекте степень поражения людей получают, используя вероятностный подход к определению поражающего фактора Р пор по пробит-функции Рг в виде

где а, b и п - константы для каждого конкретного ОХВ (табл. 2.3.), т - время воздействия опасного химического вещества, мин; С - концентрация ОХВ в конкретной точке зоны заражения, ppm, связанная с концентрацией вещества в мг/л соотношением

где С ррт, С мг/л - концентрация опасного химического вещества, выраженная в ppm и мг/л соответственно; t - температура воздуха, °С; М - молекулярная масса опасного химического вещества, кг/кмоль; Р - давление воздуха, мм рт. ст.

Токсичность (от греч. toxikon - яд) - ядовитость, свойство некоторых химических соединений и веществ биологической природы при попадании в определенных количествах в живой организм (человека, животного и растения) вызывать нарушения его физиологических функций, в результате чего возникают симптомы отравления (интоксикации, заболевания), а при тяжелых - гибель.

Вещество (соединение), обладающее свойством токсичности, называется токсичным веществом или ядом.

Токсичность - обобщенный показатель реакции организма на действие вещества, который во многом определяется особенностями характера его токсического действия.

Под характером токсического действия веществ на организм обычно подразумевается:

  • o механизм токсического действия вещества;
  • o характер патофизиологических процессов и основных симптомов поражения, возникающих после поражения биомишеней;
  • o динамика развития их во времени;
  • o другие стороны токсического действия вещества на организм.

Среди факторов, определяющих токсичность веществ, одним из важнейших является механизм их токсического действия.

Механизм токсического действия - взаимодействие вещества с молекулярными биохимическими мишенями, что является пусковым механизмом в развитии последующих процессов интоксикации.

Взаимодействие между токсичными веществами и живым организмом имеют две фазы:

  • 1) действие токсических веществ на организм - токсикодинамическая фаза;
  • 2) действие организма на токсические вещества - токсикокинетическая фаза.

Токсикокинетическая фаза в свою очередь состоит из двух видов процессов:

  • а) процессы распределения: поглощение, транспорт, накопление и выделение токсических веществ;
  • б) метаболические превращения токсических веществ - биотрансформация.

Распределение веществ в организме человека зависит в основном от физико-химических свойств веществ и структуры клетки как основной единицы организма, в особенности структуры и свойств клеточных мембран.

Важным положением в действии ядов и токсинов является то, что они оказывают токсический эффект при действии на организм в малых дозах. В тканях-мишенях создаются очень низкие концентрации токсичных веществ, которые соизмеримы с концентрациями биомишеней. Высокие скорости взаимодействия ядов и токсинов с биомишенями достигаются благодаря высокому сродству к активным центрам определенных биомишеней.

Однако, прежде чем "поразить" биомишень, вещество проникает с места аппликации в систему капилляров кровеносных и лимфатических сосудов, затем разносится кровью по организму и поступает в ткани-мишени. С другой стороны, как только яд поступает в кровь и ткани внутренних органов, он претерпевает определенные превращения, которые обычно приводят к детоксикации и "расходу" вещества на так называемые неспецифические ("побочные") процессы.

Одним из важных факторов является скорость проникновения веществ через клеточно-тканевые барьеры. С одной стороны, это определяет скорости проникновения ядов через тканевые барьеры, отделяющие кровь от внешней среды, т.е. скорости поступления веществ по определенным путям проникновения в организм. С другой стороны, это определяет скорости проникновения веществ из крови в ткани-мишени через так называемые гистогематические барьеры в области стенок кровеносных капилляров тканей. Это, в свою очередь, определяет скорость накопления веществ в области молекулярных биомишеней и взаимодействия веществ с биомишенями.

В некоторых случаях скорости проникновения через клеточные барьеры определяют избирательность в действии веществ на определенные ткани и органы. Это влияет на токсичность и характер токсического действия веществ. Так, заряженные соединения плохо проникают в центральную нервную систему и обладают более выраженным периферическим действием.

В целом в действии ядов на организм принято выделять следующие основные стадии.

  • 1. Стадия контакта с ядом и проникновения вещества в кровь.
  • 2. Стадия транспорта вещества с места аппликации кровью к тканям-мишеням, распределения вещества по организму и метаболизма вещества в тканях внутренних органов - токсико-кинетическая стадия.
  • 3. Стадия проникновения вещества через гистогематические барьеры (стенки капилляров и другие тканевые барьеры) и накопления в области молекулярных биомишеней.
  • 4. Стадия взаимодействия вещества с биомишенями и возникновения нарушений биохимических и биофизических процессов на молекулярном и субклеточном уровнях - токсико-динамическая стадия.
  • 5. Стадия функциональных расстройств организма развития патофизиологических процессов после "поражения" молекулярных биомишеней и возникновения симптомов поражения.
  • 6. Стадия купирования основных симптомов интоксикации, угрожающих жизни пораженного, в том числе с использованием средств медицинской защиты, или стадия исходов (при отражениях смертельными токсодозами и несвоевременном использовании средств защиты возможна гибель пораженных).

Показателем токсичности вещества является доза. Доза вещества, вызывающая определенный токсический эффект, называется токсической дозой (токсодозой). Для животных и человека она определяется количеством вещества, вызывающим определенный токсический эффект. Чем меньше токсическая доза, тем выше токсичность.

Ввиду того что реакция каждого организма на одну и ту же токсодозу конкретного токсического вещества различна (индивидуальна), то и степень тяжести отравления применительно к каждому из них не будет одинаковой. Некоторые могут погибнуть, другие получат поражения различной степени тяжести или не получат их совсем. Поэтому токсодоза (D) рассматривается как случайная величина. Из теоретических и экспериментальных данных следует, что случайная величина D распределена по логарифмически нормальному закону с параметрами: D - медианное значение токсодозы и дисперсией логарифма токсодозы - . В связи с этим на практике для характеристики токсичности используют медианные значения относительной, например к массе животного, токсодозы (далее токсодоза).

Отравления, вызванные поступлением яда из окружающей человека среды, носят название экзогенных в отличие от эндогенных интоксикаций токсическими метаболитами, которые могут образовываться или накапливаться в организме при различных заболеваниях, чаще связанных с нарушением функции внутренних органов (почки, печень и др.). В токсикогенной (когда токсический агент находится в организме в дозе, способной оказывать специфическое действие) фазе отравления выделяют два основных периода: период резорбции, продолжающийся до момента достижения максимальной концентрации яда в крови, и период элиминации, от указанного момента до полного очищения крови от яда. Токсический эффект может возникнуть до или после всасывания (резорбции) яда в кровь. В первом случае он называется местным, а во втором - резорбтивным. Различают также косвенный рефлекторный эффект.

При "экзогенных" отравлениях выделяют следующие основные пути поступления яда в организм: пероральный - через рот, ингаляционный - при вдыхании токсических веществ, перкутанный (накожный, в военном деле - кожно-резорбтивный) - через незащищенные кожные покровы, инъекционный - при парентеральном введении яда, например при укусах змей и насекомых, полостной - при попадании яда в различные полости организма (прямую кишку, влагалище, наружный слуховой проход и т.п.).

Табличные значения токсодоз (кроме ингаляционного и инъекционного путей проникновения) справедливы для бесконечно большой экспозиции, т.е. для случая, когда посторонними методами не прекращается контакт токсичного вещества с организмом. Реально для проявления того или иного токсического эффекта яда должно оказаться больше, чем приведенные в таблицах токсичности. Это количество и время, в течение которого яд должен находиться, например, на кожной поверхности при резорбции, помимо токсичности, в значительной мере обусловлено скоростью всасывания яда через кожу. Так, по данным американских военных специалистов, боевое отравляющее вещество вигаз (VX), характеризуется кожно-резорбтивной токсодозой 6-7 мг на человека. Чтобы эта доза попала в организм, 200 мг капельно-жидкого VX должно быть в контакте с кожей в течение примерно 1 ч или ориентировочно 10 мг - в течение 8 ч.

Сложнее рассчитать токсодозы для токсичных веществ, заражающих атмосферу паром или тонкодисперсным аэрозолем, например, при авариях на химически опасных объектах с выбросом аварийно химически опасных веществ (АХОВ - по ГОСТ Р 22.0.05-95), которые вызывают поражение человека и животных через органы дыхания.

Прежде всего, делают допущение, что ингаляционная токсодоза прямо пропорциональна концентрации АХОВ во вдыхаемом воздухе и времени дыхания. Кроме того, необходимо учесть интенсивность дыхания, которая зависит от физической нагрузки и состояния человека или животного. В спокойном состоянии человек делает примерно 16 вдохов в минуту и, следовательно, в среднем поглощает 8-10 л/мин воздуха. При средней физической нагрузке (ускоренная ходьба, марш) потребление воздуха увеличивается до 20-30 л/мин, а при тяжелой физической нагрузке (бег, земляные работы) составляет около 60 л/мин.

Таким образом, если человек массой G (кг) вдыхает воздух с концентрацией С (мг/л) в нем АХОВ в течение времени τ (мин) при интенсивности дыхания V (л/мин), то удельная поглощенная доза АХОВ (количество АХОВ, попавшее в организм) D(мг/кг) будет равна

Немецкий химик Ф. Габер предложил упростить это выражение. Он сделал допущение, что для людей или конкретного вида животных, находящихся в одинаковых условиях, отношение V/G постоянно, тем самым его можно исключить при характеристике ингаляционной токсичности вещества, и получил выражение К=Сτ (мг · мин/л). Произведение Сτ Габер назвал коэффициентом токсичности и принял его за постоянную величину. Это произведение, хотя и не является токсодозой в строгом смысле этого слова, позволяет сравнивать различные токсичные вещества по ингаляционной токсичности. Чем оно меньше, тем более токсично вещество при ингаляционном действии. Однако при таком подходе не учитывается ряд процессов (выдыхание обратно части вещества, обезвреживание в организме и т.п.), но тем не менее произведением Сτ до сих пор пользуются для оценки ингаляционной токсичности (особенно в военном деле и гражданской обороне при расчете возможных потерь войск и населения при воздействии боевых отравляющих веществ и АХОВ). Часто это произведение даже неправильно называют токсодозой. Более правильным представляется название относительной токсичности при ингаляции. В клинической токсикологии для характеристики ингаляционной токсичности предпочтение отдается параметру в виде концентрации вещества в воздухе, которая вызывает заданный токсический эффект у подопытных животных в условиях ингаляционного воздействии при определенной экспозиции.

Относительная токсичность ОВ при ингаляции зависит от физической нагрузки на человека. Для людей, занятых тяжелой физической работой, она будет значительно меньше, чем для людей, находящихся в покое. С увеличением интенсивности дыхания возрастет и быстродействие ОВ. Например, для зарина при легочной вентиляции 10 л/мин и 40 л/мин значения LCτ 50 составляют соответственно около 0,07 мг · мин/л и 0,025 мг · мин/л. Если для вещества фосгена произведение Сτ 3,2 мг · мин/л при интенсивности дыхания 10 л/мин является среднесмертельным, то при легочной вентиляции 40 л/мин - абсолютно смертельным.

Следует заметить, что табличные значения константы Сτ справедливы для коротких экспозиций, при которых Сτ = const. При вдыхании зараженного воздуха с невысокими концентрациями в нем токсичного вещества, но в течение достаточно длительного промежутка времени значение Сτ увеличивается вследствие частичного разложения токсичного вещества в организме и неполного поглощения его легкими. Например, для синильной кислоты относительная токсичность при ингаляции LСτ 50 колеблется от 1 мг · мин/л для высоких концентраций его в воздухе до 4 мг · мин/л, когда концентрации вещества невелики. Относительная токсичность веществ при ингаляции зависит также и от физической нагрузки на человека и его возраста. Для взрослых людей она будет снижаться с увеличением физической нагрузки, а для детей - с уменьшением возраста.

Таким образом, токсическая доза, вызывающая равные по тяжести поражения, зависит от свойств вещества, пути его проникновения в организм, от вида организма и условий применения вещества.

Для веществ, проникающих в организм в жидком или аэрозольном состоянии через кожу, желудочно-кишечный тракт или через раны, поражающий эффект для каждого конкретного вида организма в стационарных условиях зависит только от количества проникшего яда, которое может выражаться в любых массовых единицах. В токсикологии количество яда обычно выражают в миллиграммах.

Токсические свойства ядов определяют экспериментальным путем на различных лабораторных животных, поэтому чаше пользуются понятием удельной токсодозы - дозы, отнесенной к единицеживой массы животного и выражаемой в милиграммах на килограмм.

Токсичность одного и того же вещества даже при проникновении в организм одним путем различна для разных видов животных, а для конкретного животного заметно различается в зависимости от способа поступления в организм. Поэтому после численного значения токсодозы в скобках принято указывать вид животного, для которого эта доза определена, и способ введения ОВ или яда. Например, запись: "зарин D см ерт 0,017 мг/кг (кролики, внутривенно)" означает, что доза вещества зарин 0,017 мг/кг, введенная кролику в вену, вызывает у него смертельный исход.

Токсодозы и концентрации токсических веществ принято подразделять в зависимости от степени выраженности вызываемого ими биологического эффекта.

Основными показателями токсичности в токсикометрии промышленных ядов и в чрезвычайных ситуациях являются:

Lim ir - порог раздражающего действия на слизистые оболочки верхних дыхательных путей и глаз. Выражается количеством вещества, которое содержится в одном объеме воздуха (например, мг/м 3).

Смертельная, или летальная, доза - это количество вещества, вызывающее при попадании в организм смертельный исход с определенной вероятностью. Обычно пользуются понятиями абсолютно смертельных токсодоз, вызывающих гибель организма с вероятностью 100% (или гибель 100% пораженных), и среднесмертельных (медленносмертельных) или условно смертельных токсодоз, летальный исход от введения которых наступает у 50% пораженных. Например:

LD 50 (LD 100) - (L от лат. letalis - смертельный) среднесмертельная (смертельная) доза, вызывающая гибель 50% (100%) подопытных животных при введении вещества в желудок, в брюшную полость, на кожу (кроме ингаляции) при определенных условиях введения и конкретном сроке последующего наблюдения (обычно 2 недели). Выражается количеством вещества, отнесенным к единице массы тела животного (обычно, мг/кг);

LC 50 (LС 100) - среднесмертельная (смертельная) концентрация в воздухе, вызывающая гибель 50% (100%) подопытных животных при ингаляционном воздействии вещества при определенной экспозиции (стандартная 2-4 часа) и определенном сроке последующего наблюдения. Как правило, время экспозиции указывается дополнительно. Размерность как для Lim ir

Выводящая из строя доза - это количество вещества, вызывающее при попадании в организм выход из строя определенного процента пораженных как временно, так и со смертельным исходом. Ее обозначают ID 100 или ID 50 (от англ. incapacitate - вывести из строя).

Пороговая доза - количество вещества, вызывающее начальные признаки поражения организма с определенной вероятностью или, что-то же самое, начальные признаки поражения у определенного процента людей или животных. Пороговые токсодозы обозначают PD 100 или PD 50 (от англ. primary - начальный).

КВИО - коэффициент возможности ингаляционного отравления, представляющий собой отношение максимально достижимой концентрации токсичного вещества (С mах, мг/м 3) в воздухе при 20°С к средней смертельной концентрации вещества для мышей (КВИО = C max /LC 50). Величина безразмерная;

ПДК - предельно допустимая концентрация вещества - максимальное количество вещества в единице объема воздуха, воды и др., которое при ежедневном воздействии на организм в течение длительного времени не вызываете нем патологических изменений (отклонения в состоянии здоровья, заболевания), обнаруживаемых современными методами исследования в процессе жизни или отдаленные сроки жизни настоящего и последующих поколений. Различают ПДК рабочей зоны (ПДК р.з, мг/м 3), ПДК максимально разовая в атмосферном воздухе населенных мест (ПДК м.р, мг/м 3), ПДК среднесуточная в атмосферном воздухе населенных мест (ПДК с.с, мг/м 3), ПДК в воде водоемов различного водопользования (мг/л), ПДК (или допустимое остаточное количество) в продуктах питания (мг/кг) и др.;

ОБУВ - ориентировочный безопасный уровень воздействия максимального допустимого содержания токсичного вещества в атмосферном воздухе населенных мест, в воздухе рабочей зоны и в воде водоемов рыбохозяйственного водопользования. Различают дополнительно ОДУ - ориентировочный допустимый уровень вещества в воде водоемов хозяйственно-бытового водопользования.

В военной токсикометрии наиболее употребительны показатели относительных медианных значений среднесмертельной (LCτ 50), средневыводящей (IСτ 50), средней эффективно действующей (EСτ 50), средней пороговой (РСτ 50) токсичности при ингаляции, выражающихся обычно в мг · мин/л, а также медианных значений аналогичных по токсическому эффекту кожно-резорбтивных токсодоз LD 50 , LD 50 , ED 50 , PD 50 (мг/кг). При этом показатели токсичности при ингаляции используются также и для прогнозирования (оценки) потерь населения и производственного персонала при авариях на химически опасных объектах с выбросом широко используемых в промышленности АХОВ.

В отношении же растительных организмов вместо термина токсичность чаще применяют термин активность вещества, а в качестве меры его токсичности преимущественно используют величину CK 50 - концентрация (например, мг/л) вещества в растворе, вызывающая гибель 50% растительных организмов. На практике пользуются нормой расхода действующего (активного) вещества на единицу площади (массы, объема), обычно кг/га, при которой достигается необходимый эффект.

По своему происхождению токсические вещества могут быть синтетическими и природными (табл. 4.2, 4.3).

Таблица 4.2

Параметры токсичности некоторых синтетических веществ

LC 50 (мг/м 1), биообъект, экспозиция

LCx 50 , мг · мин/л

РСτ 50 мг · мин/л

воде х.-б. польз., мг/м 3

АХОВ ингаляционного действия

7600, крыса, 2 ч 3800, мышь, 2 ч

Метил бромистый

1540, мышь, 2 ч 2250, крыса, 2 ч

Метил хлористый

5300, крыса, 4 ч

Метил меркаптан

1700, мышь, 2 ч 1200, крыса, 2 ч

Оксид этилена

1500, мышь, 4 ч 2630, крыса, 4 ч

Сероводород

1200, мышь, 2 ч

  • 0,008
  • (м.р.)

Сероуглерод

10 000, мышь, 2 ч 25 000, крыса, 2 ч

Синильная кислота

400-700 (LC 100), чел., 2-5 мин

360 (Z,C 100), чел., 30 мин

1900(LC 100), собака, 30 мин

Отсутствие в воде

Боевые отравляющие вещества

Таблица 4.3

Токсичность ядов некоторых животных

LD 50 , мг/кг (мыши)

Морская змея Enhydrina schistosa

Тигровая змея Notechis scutatus

Гремучник Crotalusdirissus terrificus, гадюка Vipera russeli и крайт Bungarus cferuleus

0,08-0,09 (в/м)

Морские змеи рода Hydrophis и земляные гадюки Atractaspis

0,1-0,2 (в/бр)

Кобры, многие гремучие змеи

Скорпионы

Tiryus serrulatus

Leiurus quinquestriatus

Androctonus australis

0,5 (п/к) 0,009 (в/м)

Buthus occitanus

Opistophthalmus spp.

Кишечнополостные

Морская крапива Chrysaora quinquecirrha

Корнеротая медуза Stomolophus meleagris

Медуза Cyanea capillata

Актиния Anemonia sulcata

Актиния Anthopleura xant hog ram mica

0,008-0,066 (в/в)

Мадрепоровые кораллы Goniopora sp.

Примечание. в/в - внутривенно, в/м - внутримышечно, в/бр - внутрибрюшинно, п/к - подкожно.

Из токсичных веществ природного происхождения дополнительно выделяют токсины (табл. 4.4). Обычно к ним относят высокомолекулярные соединения (белки, полипептиды и др.), при попадании которых в организм происходит выработка антител. Иногда токсинами называют также низкомолекулярные вещества (например, тетродотоксин и др. яды животных), которые более правильно относить к природным ядам.

Таблица 4.4

Токсичность некоторых токсинов

Многочисленные исследования по острой токсичности позволили сделать важные выводы: 1) каждой выборке веществ с сопоставимыми значениями молекулярных масс соответствует некоторое предельное значение минимальных токсодоз; 2) для совокупности наиболее токсичных веществ природного и синтетического происхождения наблюдается прямая зависимость токсичности соединений от их молекулярных масс (рис. 4.4). Это позволяет при проведении научных исследованиях предсказывать токсичность соединений и выбирать пределы токсодоз в токсикологических экспериментах.

Рис. 4.4. Зависимость токсичности соединений от их молекулярной массы (М). Черными кружками показаны синтетические яды

При определении параметров токсичности экспериментально на животных исследуют зависимость эффект - доза, которую затем анализируют с помощью статистических методов (например, пробит - анализа). Установление токсического действия вещества на основании опыта на животных оказывается правильным при изучении на крысах не более чем в 35% случаев, а на собаках - в 53%. Точные значения смертельных доз и концентраций для человека, естественно, не установлены. Поэтому при экстраполяции экспериментальных данных на человека руководствуются следующими правилами: 1) если смертельные дозы для обычных четырех типов лабораторных грызунов (мыши, крысы, морские свинки и кролики) различаются незначительно (менее чем в 3 раза), то существует высокая вероятность (до 70%) того, что и для человека смертельная доза будет той же; 2) ориентировочно смертельная доза для человека может быть найдена путем построения линии регрессии из нескольких точек в системе координат: а) смертельная доза для данного вида животного; б) масса его тела.

В системе стандартов безопасности труда (ГОСТ 12.1.007-76) по степени воздействия на организм все вредные вещества, содержащиеся в сырье, продуктах, полупродуктах и отходах производства, подразделены на четыре класса опасности: 1-й - вещества чрезвычайно опасные, 2-й - вещества высокоопасные; 3-й - вещества умеренно опасные; 4-й - вещества малоопасные (табл. 4.5). Основой такого деления являются численные значения приведенных выше показателей токсичности веществ.

Таблица 4.5

Классы опасности вредных веществ

Наименование показателей

Нормы для класса опасности

Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны, мг/м 3

Средняя смертельная доза при введении в желудок, мг/кг

Более 5 000

Средняя смертельная доза при нанесении на кожу, мг/кг

Более 2 500

Средняя смертельная концентрация в воздухе, мг/м 3

Более 50 000

Коэффициент возможности ингаляционного отравления (КВИО)

Примечание. Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности

Особенности характера токсического действия на организм положены в основу токсикологической (физиологической) классификации вредных веществ (ядов и токсинов).

По воздействию вредные вещества делятся на группы:

  • 1) вещества с преимущественно удушающим действием (хлор, фосген, хлорпикрин);
  • 2) вещества преимущественно общеядовитого действия (оксид углерода, цианистый водород);
  • 3) вещества, обладающие удушающим и общеядовитым действием (амил, акрилонитрил, азотная кислота и оксиды азота, сернистый ангидрид, фтористый водород);
  • 4) вещества, действующие на генерацию, проведение и передачу первичных импульсов - нейротропные яды (сероуглерод, тетраэтилсвинец, фосфорорганические соединения);
  • 5) вещества, обладающие удушающим и нейротропным действием (аммиак, гептил, гидразин);
  • 6) метаболические (нарушающие обмен веществ в живых организмах) яды (оксид этилена, дихлорэтан, диоксин, полихлорированные бензофураны).

При поступлении вредных веществ в организм возникает его отравление (интоксикация). В зависимости от скорости поступления вредных веществ в организм различают отравления острые и хронические.

Острые отравления возникают при одновременном поступлении в организм вредных веществ и характеризуются острым началом и выраженными специфическими симптомами. В этом случае симптомы интоксикации обычно развиваются быстро, и гибель организма или тяжелые последствия могут наступать в сравнительно короткое время (случай аварии с выбросом химических веществ). В некоторых случаях, несмотря на то, что имеет место острая форма отравления, симптомы интоксикации могут развиваться медленно (например, действие фосгена).

Хронические отравления развиваются при длительном, часто прерывистом поступлении вредных веществ в малых дозах, когда заболевание начинается с неспецифических симптомов (случай использования на производстве химических веществ).

Иногда выделяют также подострые формы интоксикации, занимающие как бы промежуточное положение по длительности воздействия вещества на организм между острыми и хроническими поражениями, при воздействии веществ в течение часов, десятков часов и суток.

При хронических и подострых формах отравления имеет место кумуляция, т.е. накопление в организме либо токсичного вещества, либо вызываемых им эффектов. Соответственно различают материальную и функциональную кумуляцию, а также кумуляцию смешанного типа.

Если вещество медленно детоксицируется, т.е. медленно выводится из организма, и поэтому постепенно накапливается в организме, то это материальная кумуляция, например при интоксикации мышьяком, ртутью, ДДТ, диоксином и др.

В основе функциональной кумуляции лежит суммирование токсических эффектов, а не самого вещества. Например, при действии фосгена накапливается не вещество, а количество разрушенных клеточных элементов легочной ткани. Хорошо известным и типичным примером функциональной кумуляции является действие на организм этилового спирта при частом его употреблении, когда происходит накопление повреждений в тканях центральной нервной системы, печени, половых желез и других органов.

При действии ядов часто имеет место сочетание материальной и функциональной кумуляции - смешанный тип кумуляции, например в случае поражения фосфорорганическими веществами при подострых формах интоксикации.

Таким образом, важную роль в динамике развития интоксикации играют:

  • 1. Пути проникновения вещества в организм и скорости поступления в кровь. Так, при ингаляции симптомы поражения, как правило, возникают быстро, а при действии через кожу яд медленно поступает в кровь, что является причиной выраженного скрытого периода.
  • 2. Пути и скорости метаболизма веществ на токсико-кинетической стадии. Вещества, подвергающиеся быстрой детоксикации в крови и тканях, как правило, не обладают скрытым периодом действия, который характерен для веществ, устойчивых к детоксикации.
  • 3. Скорости проникновения веществ через гистогематические барьеры. Эти скорости, как правило, являются лимитирующим фактором в токсическом действии высокомолекулярных веществ (полипептидов и белков) при проникновении их из кровяного потока в ткани-мишени. Именно этим, в основном, объясняется большой скрытый период в действии бактериальных токсинов.
  • 4. Скорости взаимодействия веществ с биомишенями. Яды и токсины, как правило, с большими скоростями взаимодействуют с биомишенями. Лимитирующими являются скорости накопления веществ в области биомишеней.
  • 5. Функциональная значимость поражаемых биомишеней и динамика развития патологических процессов после "поражения" биомишеней. Для нейротропных веществ характерно быстрое развитие симптомов поражения, а для цитотоксических - постепенное.
  • 6. Условия воздействия вещества. Более быстрое развитие симптомов поражения наблюдается, как правило, при получении нескольких смертельных токсодоз. В хроническом опыте симптомы интоксикации развиваются более медленно, чем в остром опыте.