Виды зависимостей исследуемых в многомерном статистическом анализе. Анализ многомерный статистический

Изложены основные понятия и методы статистического анализа многомерных результатов технических экспериментов . <...> Приведены теоретические сведения о свойствах многомерных гауссовских распределений . <...> Результатом эксперимента, рассматриваемого в пособии, является случайный вектор , распределенный по нормальному закону. <...> Многомерная нормальная плотность Часто результатом эксперимента является совокупность чисел, характеризующая некоторый исследуемый объект. <...> 4 f x  Запись в виде ξ  ~ (ND ,)μ  имеет p-мерное нормальное распределение . означает, что вектор ξ , ξ) принимает различные значения, поэтому с полным основанием можно говорить о случайном векторе 12 компонент вектора ,ξ  компонент,ξ  т. е. EDE E   ξ= E E ξ ξ  = μ = ξ − μ ξ − μ ()()  ξp где Е – знак математического ожидания. <...> Пусть η ров p pЧ   шениями μ= ν +B ;.   bD BD Bη ξ = ′ , (1.3) Матрица D из (1.2) – симметричная, положительно-определенная, поэтому справедливо ее представление D CC′=Λ где C – ортогональная матрица , составленная из собственных векторов матрицы ;D Λ – диагональная матрица с собственными числами λ>i 0 матрицы D по главной диагонали. <...> Совместная плотность его компонент,1,η=i ip, определенная по общим правилам (см. приложение), равна 5 (1.4) ; линейное преобразование ,η  где B – квадратная матрица разме – случайный вектор, вариаций,. <...> Оценивание параметров нормального распределения Пусть 12 ξ , nξξ    купности, т. е. статистической обработки является оценка вектора средних μ  и i ND . <...> Основной задачей первичной μ=i n  матрицы ковариаций . <...> A ln ∂ = (1.5) Учитывая правила дифференцирования функционалов по векторному или матричному аргументам (см. <...> Тогда σ = ξ −ξ ξ − ξ = ξ ξ −ξ ξ∑∑ ij nn ki i kj j kk Здесь kiξ – i-я компонента вектора среднего iμ i-й компоненты вектора . <...> Оценки максимального правдоподобия коэфij / ρ=σ σ σ имеют вид ij ,. ij ii jj ri j σ σσ  ≠ ii jj Доказательство. <...> Оценивание зависимости между компонентами нормального вектора Подробный анализ связей <...>

МУ_к_выполнению_курсовой_работы_«Многомерный_статистический_анализ».pdf

УДК 519.2 ББК 22.172 К27 Рецензент В.Ю. Чуев Карташов Г.Д., Тимонин В.И., Будовская Л.М. К27 Многомерный статистический анализ: Методические указания к выполнению курсовой работы. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. – 48 с.: ил. Изложены основные понятия и методы статистического анализа многомерных результатов технических экспериментов. Приведены теоретические сведения о свойствах многомерных гауссовских распределений. Для студентов старших курсов факультета фундаментальных наук. Ил. 2. Библиогр. 5 назв. УДК 519.2 ББК 22.172 © МГТУ им. Н.Э. Баумана, 2007

Стр.2

ОГЛАВЛЕНИЕ Введение....................................................................................................... 3 1. Многомерное нормальное распределение...................................... 4 2. Статистические выводы о векторе средних.................................... 17 3. Дискриминантный анализ................................................................. 23 4. Метод главных компонент............................................................... 27 5. Канонические корреляции................................................................ 30 6. Многомерный регрессионный анализ............................................. 35 7. Факторный анализ............................................................................. 40 Приложение.................................................................................................. 44 Список литературы...................................................................................... 46 47

Из предисловия автора
Глава 1. Введение
1.1. Многомерное нормальное распределение как модель
1.2. Общий обзор многомерных методов
Литература
Глава 2. Многомерное нормальное распределение
2.1. Введение
2.2. Понятия, связанные с многомерными распределениями
2.3. Многомерное нормальное распределение
2.4. Распределение линейной комбинации нормально распределенных величин; независимость величин; частные распределения
2.5. Условные распределения и множественный коэффициент корреляции
2.6. Характеристическая функция; моменты
Литература
Задачи
Глава 3. Оценка вектора среднего значения и ковариационной матрицы
3.1. Введение
3.2. Оценки наибольшего правдоподобия для вектора среднего значения и ковариационной матрицы
3.3. Распределение вектора выборочного среднего; заключение о среднем значении, когда ковариационная матрица известна
Литература
Задачи
Глава 4. Распределения и использование выборочных коэффициентов корреляции
4.1. Введение
4.2. Коэффициент корреляции двумерной выборки
4.3. Частные коэффициенты корреляции
4.4. Множественный коэффициент корреляции
Литература
Задачи
Глава 5. Обобщенная T2-статистика
5.1. Введение
5.2. Обобщенная T2-статистика и ее распределение
5.3. Применения T2-статистики
5.4. Распределение T2-статистики при наличии конкурирующих гипотез; функция мощности
5.5. Некоторые оптимальные свойства критерия Т2
5.6. Многомерная проблема Беренса - Фишера
Литература
Задачи
Глава 6. Классификация наблюдений
6.1. Проблема классификации
6.2. Принципы правильной классификации
6.3. Методы классификации наблюдений в случае двух генеральных совокупностей с известным распределением вероятностей
6.4. Классификация наблюдений в случае двух генеральных совокупностей, имеющих известные многомерные нормальные распределения
6.5. Классификация наблюдений в случае двух многомерных нормальных генеральных совокупностей, параметры которых оцениваются по выборке
6.6. Классификация наблюдений в случае нескольких генеральных совокупностей
6.7. Классификация наблюдений в случае нескольких многомерных нормальных совокупностей
6.8. Пример классификации в случае нескольких многомерных нормальных генеральных совокупностей
Литература
Задачи
Глава 7. Распределение выборочной ковариационной матрицы и выборочной обобщенной дисперсии
7.1. Введение
7.2. Распределение Уишарта
7.3. Некоторые свойства распределения Уишарта
7.4. Теорема Кохрена
7.5. Обобщенная дисперсия
7.6. Распределение множества коэффициентов корреляции в случае диагональной ковариационной матрицы совокупности
Литература
Задачи
Глава 8. Проверка общих линейных гипотез. Дисперсионный анализ
8.1. Введение
8.2. Оценки параметров многомерной линейной регрессии
8.3. Критерии отношения правдоподобия для проверки линейных гипотез о коэффициентах регрессии
8.4. Моменты отношения правдоподобия в случае, когда справедлива нулевая гипотеза
8.5. Некоторые распределения величин U
8.6. Асимптотическое разложение распределения отношения правдоподобия
8.7. Проверка гипотез о матрицах коэффициентов регрессии и доверительные области
8.8. Проверка гипотезы о равенстве средних значений нормальных распределений с общей ковариационной матрицей
8.9. Обобщенный дисперсионный анализ
8.10. Другие критерии для проверки линейной гипотезы
8.11. Каноническая форма
Литература
Задачи
Глава 9. Проверка гипотезы о независимости множеств случайных величин
9.1. Введение
9.2. Отношение правдоподобия как критерий для проверки гипотезы о независимости множеств случайных величин
9.3. Моменты отношения правдоподобия при условии, что справедлива нулевая гипотеза
9.4. Некоторые распределения отношения правдоподобия
9.5. Асимптотическое разложение распределения величины h (отношения правдоподобия)
9.6. Пример
9.7. Случай двух множеств случайных величин
Литература
Задачи
Глава 10. Проверка гипотез о равенстве ковариационных матриц и о равенстве одновременно векторов среднего значения и ковариационных матриц
10.1 Введение
10.2 Критерии проверки гипотез о равенстве нескольких ковариационных матриц
10.3. Критерии проверки гипотезы об эквивалентности нескольких нормальных совокупностей
10.4. Моменты отношения правдоподобия
10.5. Асимптотические разложения функций распределения величин V1 и V
10.6. Случай двух генеральных совокупностей
10.7. Проверка гипотезы о том, что ковариационная матрица пропорциональна заданной матрице. Критерий сферичности
10.8. Проверка гипотезы о том, что ковариационная матрица равна данной матрице
10.9. Проверка гипотезы о том, что вектор среднего значения и ковариационная матрица соответственно равны данному вектору и данной матрице
Литература
Задачи
Глава 11. Главные компоненты
11.1. Введение
11.2. Определение главных компонент совокупности
11.3. Оценки наибольшего правдоподобия для главных компонент и их дисперсий
11.4. Вычисление оценок наибольшего правдоподобия для главных компонент
11.5. Пример
Литература
Задачи
Глава 12. Канонические корреляции и канонические величины
12.1. Введение
12.2. Канонические корреляции и канонические величины генеральной совокупности
12.3. Оценка канонических корреляций и канонических величин
12.4. Способ вычислений
12.5. Пример
Литература
Задачи
Глава 13. Распределение некоторых характеристических корней и векторов, не зависящих от параметров
13.1. Введение
13.2. Случай двух матриц Уишарта
13.3. Случай одной невырожденной матрицы Уишарта
13.4. Канонические корреляции
Литература
Задачи
Глава 14. Обзор некоторых других работ по многомерному анализу
14.1. Введение
14.2 Проверка гипотез о ранге и оценка линейных ограничений на коэффициенты регрессии. Канонические корреляции и канонические величины
14.3. Нецентральное распределение Уишарта
14.4. Распределение некоторых характеристических корней и векторов, зависящих от параметров
14.5. Асимптотическое распределение некоторых характеристических корней и векторов
14.6. Главные компоненты
14.7. Факторный анализ
14.8. Стохастические уравнения
14.9. Анализ временных рядов
Литература
Приложение. Теория матриц
1. Определение матриц. Действия над матрицами
2. Характеристические корни и векторы
3. Разбиение векторов и матриц на блоки
4. Некоторые результаты
5. Метод сокращения Дулиттла и метод сгущения по оси для решения систем линейных уравнений
Литература
Предметный указатель

По эконометрике

Многомерный статистический анализ


В многомерном статистическом анализе выборка состоит из элементов многомерного пространства. Отсюда и название этого раздела эконометрических методов. Из многих задач многомерного статистического анализа рассмотрим две - восстановления зависимости и классификации.

Оценивание линейной прогностической функции

Начнем с задачи точечного и доверительного оценивания линейной прогностической функции одной переменной.

Исходные данные – набор n пар чисел (t k , x k), k = 1,2,…,n, где t k – независимая переменная (например, время), а x k – зависимая (например, индекс инфляции, курс доллара США, объем месячного производства или размер дневной выручки торговой точки). Предполагается, что переменные связаны зависимостью

x k = a (t k - t ср)+ b + e k , k = 1,2,…,n,

где a и b – параметры, неизвестные статистику и подлежащие оцениванию, а e k – погрешности, искажающие зависимость. Среднее арифметическое моментов времени

t ср = (t 1 + t 2 +…+t n) / n

введено в модель для облегчения дальнейших выкладок.

Обычно оценивают параметры a и b линейной зависимости методом наименьших квадратов. Затем восстановленную зависимость используют для точечного и интервального прогнозирования.

Как известно, метод наименьших квадратов был разработан великим немецким математиком К. Гауссом в 1794 г. Согласно этому методу для расчета наилучшей функции, приближающей линейным образом зависимость x от t, следует рассмотреть функцию двух переменных


Оценки метода наименьших квадратов - это такие значения a* и b*, при которых функция f(a,b) достигает минимума по всем значениям аргументов.

Чтобы найти эти оценки, надо вычислить частные производные от функции f(a,b) по аргументам a и b, приравнять их 0, затем из полученных уравнений найти оценки: Имеем:

Преобразуем правые части полученных соотношений. Вынесем за знак суммы общие множители 2 и (-1). Затем рассмотрим слагаемые. Раскроем скобки в первом выражении, получим, что каждое слагаемое разбивается на три. Во втором выражении также каждое слагаемое есть сумма трех. Значит, каждая из сумм разбивается на три суммы. Имеем:


Приравняем частные производные 0. Тогда в полученных уравнениях можно сократить множитель (-2). Поскольку

(1)

уравнения приобретают вид

Следовательно, оценки метода наименьших квадратов имеют вид

(2)

В силу соотношения (1) оценку а* можно записать в более симметричном виде:

Эту оценку нетрудно преобразовать и к виду

Следовательно, восстановленная функция, с помощью которой можно прогнозировать и интерполировать, имеет вид

x*(t) = a*(t - t ср)+ b*.

Обратим внимание на то, что использование t ср в последней формуле ничуть не ограничивает ее общность. Сравним с моделью вида

x k = c t k + d + e k , k = 1,2,…,n.

Ясно, что

Аналогичным образом связаны оценки параметров:

Для получения оценок параметров и прогностической формулы нет необходимости обращаться к какой-либо вероятностной модели. Однако для того, чтобы изучать погрешности оценок параметров и восстановленной функции, т.е. строить доверительные интервалы для a*, b* и x*(t), подобная модель необходима.

Непараметрическая вероятностная модель. Пусть значения независимой переменной t детерминированы, а погрешности e k , k = 1,2,…,n, - независимые одинаково распределенные случайные величины с нулевым математическим ожиданием и дисперсией

неизвестной статистику.

В дальнейшем неоднократно будем использовать Центральную Предельную Теорему (ЦПТ) теории вероятностей для величин e k , k = 1,2,…,n (с весами), поэтому для выполнения ее условий необходимо предположить, например, что погрешности e k , k = 1,2,…,n, финитны или имеют конечный третий абсолютный момент. Однако заострять внимание на этих внутриматематических "условиях регулярности" нет необходимости.

Асимптотические распределения оценок параметров. Из формулы (2) следует, что

(5)

Согласно ЦПТ оценка b* имеет асимптотически нормальное распределение с математическим ожиданием b и дисперсией

оценка которой приводится ниже.

Из формул (2) и (5) вытекает, что

Последнее слагаемое во втором соотношении при суммировании по i обращается в 0, поэтому из формул (2-4) следует, что

(6)

Формула (6) показывает, что оценка

является асимптотически нормальной с математическим ожиданием и дисперсией

Отметим, что многомерная нормальность имеет быть, когда каждое слагаемое в формуле (6) мало сравнительно со всей суммой, т.е.


Из формул (5) и (6) и исходных предположений о погрешностях вытекает также несмещенность оценок параметров.

Несмещенность и асимптотическая нормальность оценок метода наименьших квадратов позволяют легко указывать для них асимптотические доверительные границы (аналогично границам в предыдущей главе) и проверять статистические гипотезы, например, о равенстве определенным значениям, прежде всего 0. Предоставляем читателю возможность выписать формулы для расчета доверительных границ и сформулировать правила проверки упомянутых гипотез.

Асимптотическое распределение прогностической функции. Из формул (5) и (6) следует, что

т.е. рассматриваемая оценка прогностической функции является несмещенной. Поэтому

При этом, поскольку погрешности независимы в совокупности и

, то

Таким образом,

Введение

Глава 1. Множественный регрессионный анализ

Глава 2. Кластерный анализ

Глава 3. Факторный анализ

Глава 4. Дискриминантный анализ

Список используемой литературы

Введение

Исходная информация в социально-экономических исследованиях представляется чаще всего в виде набора объектов, каждый из которых характеризуется рядом признаков (показателей). Поскольку число таких объектов и признаков может достигать десятков и сотен, и визуальный анализ этих данных малоэффективен, то возникают задачи уменьшения, концентрации исходных данных, выявления структуры и взаимосвязи между ними на основе построения обобщенных характеристик множества признаков и множества объектов. Такие задачи могут решиться методами многомерного статистического анализа.

Многомерный статистический анализ - раздел статистики, посвященный математическим методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого и предназначенным для получения научных и практических выводов.

Основное внимание в многомерном статистическом анализе уделяется математическим методам построения оптимальных планов сбора, систематизации и обработки данных, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака и предназначенным для получения научных и практических выводов.

Исходным массивом многомерных данных для проведения многомерного анализа обычно служат результаты измерения компонент многомерного признака для каждого из объектов исследуемой совокупности, т.е. последовательность многомерных наблюдений. Многомерный признак чаще всего интерпретируется как , а последовательность наблюдений как выборка из генеральной совокупности. В этом случае выбор метода обработки исходных статистических данных производится на основе тех или иных допущений относительно природы закона распределения изучаемого многомерного признака.

1. Многомерный статистический анализ многомерных распределений и их основных характеристик охватывает ситуации, когда обрабатываемые наблюдения имеют вероятностную природу, т.е. интерпретируются как выборка из соответствующей генеральной совокупности. К основным задачам этого подраздела относятся: оценивание статистическое исследуемых многомерных распределений и их основных параметров; исследование свойств используемых статистических оценок; исследование распределений вероятностей для ряда статистик, с помощью которых строятся статистические критерии проверки различных гипотез о вероятностной природе анализируемых многомерных данных.

2. Многомерный статистический анализ характера и структуры взаимосвязей компонент исследуемого многомерного признака объединяет понятия и результаты, присущие таким методам и моделям, как анализ, дисперсионный анализ, ковариационный анализ, факторный анализ и т.д. Методы, принадлежащие к этой группе, включают как алгоритмы, основанные на предположении о вероятностной природе данных, так и методы, не укладывающиеся в рамки какой-либо вероятностной модели (последние чаще относят к методам ).

3.Многомерный статистический анализ геометрической структуры исследуемой совокупности многомерных наблюдений объединяет понятия и результаты, свойственные таким моделям и методам, как дискриминантный анализ, кластерный анализ, многомерное шкалирование. Узловым для этих моделей является понятие расстояния, либо меры близости между анализируемыми элементами как точками некоторого пространства. При этом анализироваться могут как объекты (как точки, задаваемые в признаковом пространстве), так и признаки (как точки, задаваемые в объектном пространстве).

Прикладное значение многомерного статистического анализа состоит в основном в решении следующих трех задач:

· задача статистического исследования зависимостей между рассматриваемыми показателями;

· задача классификации элементов (объектов или признаков);

· задача снижения размерности рассматриваемого признакового пространства и отбора наиболее информативных признаков.

Множественный регрессионный анализ предназначен для построения модели, позволяющей по значениям независимых переменных получать оценки значений зависимой переменной.

Логистическая регрессия для решения задачи классификации. Это разновидность множественной регрессии, назначение которой состоит в анализе связи между несколькими независимыми переменными и зависимой переменной.

Факторный анализ занимается определением относительно небольшого числа скрытых (латентных) факторов, изменчивостью которых объясняется изменчивость всех наблюдаемых показателей. Факторный анализ направлен на снижение размерности рассматриваемой задачи.

Кластерный и дискриминантный анализ предназначены для разделения совокупностей объектов на классы, в каждый из которых должны входить объекты в определенном смысле однородные или близкие. При кластерном анализе заранее неизвестно, сколько получится групп объектов и какого они будут объема. Дискриминантный анализ разделяет объекты по уже существующим классам.

Глава 1. Множественный регрессионный анализ

Задание: Исследование рынка жилья в Орле (Советский и Северный районы).

В таблице приведены данные по цене квартир в Орле и по различным факторам, ее обусловливающим:

· общая площадь;

· площадь кухни;

· жилая площадь;

· тип дома;

· количество комнат. (Рис.1)

Рис. 1 Исходные данные

В графе «Район» использованы обозначения:

3 – Советский (элитный, относится к центральным районам);

4 – Северный.

В графе «Тип дома»:

1 – кирпичный;

0 – панельный.

Требуется:

1. Проанализировать связь всех факторов с показателем «Цена» и между собой. Отобрать факторы, наиболее подходящие для построения регрессионной модели;

2. Сконструировать фиктивную переменную, отображающую принадлежность квартиры к центральным и периферийным районам города;

3. Построить линейную модель регрессии для всех факторов, включив в нее фиктивную переменную. Пояснить экономический смысл параметров уравнения. Оценить качество модели, статистическую значимость уравнения и его параметров;

4. Распределить факторы (кроме фиктивной переменной) по степени влияния на показатель «Цена»;

5. Построить линейную модель регрессии для наиболее влиятельных факторов, оставив в уравнении фиктивную переменную. Оценить качество и статистическую значимость уравнения и его параметров;

6. Обосновать целесообразность или нецелесообразность включения в уравнение п. 3 и 5 фиктивной переменной;

7. Оценить интервальные оценки параметров уравнения с вероятностью 95%;

8. Определить, сколько будет стоить квартира общей площадью 74,5 м² в элитном (периферийном) районе.

Выполнение:

1. Проанализировав связь всех факторов с показателем «Цена» и между собой, были отобраны факторы, наиболее подходящие для построения регрессионной модели, используя метод включения «Forward»:

А) общая площадь;

В) количество комнат.

Включенные/исключенные переменные(a)

a Зависимая переменная: Цена

2. Переменная Х4 «Район» является фиктивной переменной, так как имеет 2 значения: 3-принадлежность к центральному району «Советский», 4- к периферийному району «Северный».

3. Построим линейную модель регрессии для всех факторов (включая фиктивную переменную Х4).

Полученная модель:

Оценка качества модели.

Стандартная ошибка = 126,477

Коэффициент Дарбина - Уотсона = 2,136

Проверка значимости уравнения регрессии

Значение критерия F-Фишера = 41,687

4. Построим линейную модель регрессию со всеми факторами (кроме фиктивной переменной Х4)

По степени влияния на показатель «Цена» распределили:

Самый значимый фактор – общая площадь (F= 40,806)

Второй по значимости фактор- количество комнат (F= 29,313)

5. Включенные/исключенные переменные

a Зависимая переменная: Цена

6. Построим линейную модель регрессии для наиболее влиятельных факторов с фиктивной переменной, в нашем случае она и является одним из влиятельных факторов.

Полученная модель:

У = 348,349 + 35,788 Х1 -217,075 Х4 +305,687 Х7

Оценка качества модели.

Коэффициент детерминации R2 = 0,807

Показывает долю вариации результативного признака под воздействием изучаемых факторов. Следовательно, около 89% вариации зависимой переменной учтено и обусловлено в модели влиянием включенных факторов.

Коэффициент множественной корреляции R = 0,898

Показывает тесноту связи между зависимой переменной У со всеми включенными в модель объясняющими факторами.

Стандартная ошибка = 126,477

Коэффициент Дарбина - Уотсона = 2,136

Проверка значимости уравнения регрессии

Значение критерия F-Фишера = 41,687

Уравнение регрессии следует признать адекватным, модель считается значимой.

Самый значимый фактор – количество комнат (F=41,687)

Второй по значимости фактор- общая площадь (F= 40,806)

Третий по значимости фактор- район (F= 32,288)

7. Фиктивная переменная Х4 является значимым фактором, поэтому целесообразно включить ее в уравнение.

Интервальные оценки параметров уравнения показывают результаты прогнозирования по модели регрессии.

С вероятностью 95% объем реализации в прогнозируемом месяце составит от 540,765 до 1080,147 млн. руб.

8. Определение стоимости квартиры в элитном районе

Для 1 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 3 + 305,687 * 1

Для 2 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 3 + 305,687 * 2

Для 3 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 3 + 305,687 * 3

в периферийном

Для 1 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 4 + 305,687 * 1

Для 2 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 4 + 305,687 * 2

Для 3 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 4 + 305,687 * 3

Глава 2. Кластерный анализ

Задание: Исследование структуры денежных расходов и сбережений населения.

В таблице представлена структура денежных расходов и сбережений населения по регионам Центрального федерального округа Российской федерации в 2003 г. Для следующих показателей:

· ПТиОУ – покупка товаров и оплата услуг;

· ОПиВ – обязательные платежи и взносы;

· ПН – приобретение недвижимости;

· ПФА – прирост финансовых активов;

· ДР – прирост (уменьшение) денег на руках у населения.

Рис. 8 Исходные данные

Требуется:

1) определить оптимальное количество кластеров для разбиения регионов на однородные группы по всем группировочным признакам одновременно;

2) провести классификацию областей иерархическим методом с алгоритмом межгрупповых связей и отобразить результаты в виде дендрограммы;

3) проанализировать основные приоритеты денежных расходов и сбережений в полученных кластерах;

Выполнение:

1) Определить оптимальное количество кластеров для разбиения регионов на однородные группы по всем группировочным признакам одновременно;

Для определения оптимального количества кластеров нужно воспользоваться Иерархическим кластерным анализом и обратиться к таблице «Шаги агломерации» к столбцу «Коэффициенты».

Эти коэффициенты подразумевают расстояние между двумя кластерами, определенное на основании выбранной дистанционной меры (Евклидово расстояние). На том этапе, когда мера расстояния между двумя кластерами увеличивается скачкообразно, процесс объединения в новые кластеры необходимо остановить.

В итоге, оптимальным считается число кластеров, равное разности количества наблюдений (17) и номера шага (14),после которого коэффициент увеличивается скачкообразно. Таким образом, оптимальное количество кластеров равно 3. (Рис.9)

статистический математический анализ кластерный

Рис. 9 Таблица «Шаги агломерации»

2) Провести классификацию областей иерархическим методом с алгоритмом межгрупповых связей и отобразить результаты в виде дендрограммы;

Теперь, используя оптимальное количество кластеров, проводим классификацию областей иерархическим методом. И в выходных данных обращаемся к таблице «Принадлежность к кластерам». (Рис.10)

Рис. 10 Таблица «Принадлежность к кластерам»

На Рис. 10 отчетливо видно, что в 3 кластер попали 2 области (Калужская, Московская) и г. Москва, во 2 кластер две (Брянская, Воронежская, Ивановская, Липецкая, Орловская, Рязанская, Смоленская, Тамбовская, Тверская), в 1 кластер – Белгородская, Владимирская, Костромская, Курская, Тульская, Ярославская.

Рис. 11 Дендрограмма

3) проанализировать основные приоритеты денежных расходов и сбережений, в полученных кластерах;

Для анализа полученных кластеров нам нужно провести «Сравнение средних». В выходном окне выводится следующая таблица (Рис. 12)

Рис. 12 Средние значения переменных

В таблице «Средних значений» мы можем проследить, каким структурам отдается наибольший приоритет в распределении денежных расходов и сбережений населения.

В первую очередь стоит отметить, что самый высокий приоритет во всех областях отдается покупке товаров и оплате услуг. Большее значение параметр принимает в 3 кластере.

2 место занимает прирост финансовых активов. Наибольшее значение в 1 кластере.

Наименьший коэффициент в 1 и 2 кластерах у «приобретение недвижимости», а в 3 кластере выявлено заметное уменьшение денег на руках у населения.

В целом особое значение для населения имеет покупка товаров и оплата услуг и незначительное покупка недвижимости.

4) сравнить полученную классификацию с результатами применения алгоритма внутригрупповых связей.

В анализе межгрупповых связей ситуация практически не изменилась, за исключением Тамбовской области, которая из 2 кластера попала в 1.(Рис.13)

Рис. 13 Анализ внутригрупповых связей

В таблице «Средних значений» никаких изменений не произошло.

Глава 3. Факторный анализ

Задание: Анализ деятельности предприятий легкой промышленности.

Имеются данные обследований 20 предприятий легкой промышленности (Рис. 14) по следующим характерным признакам:

· Х1 – уровень фондоотдачи;

· Х2 – трудоемкость единицы продукции;

· Х3 – удельный вес закупочных материалов в общих расходах;

· Х4 – коэффициент сменности оборудования;

· Х5 – премии и вознаграждения на одного работника;

· Х6 – удельный вес потерь от брака;

· Х7 – среднегодовая стоимость основных производственных фондов;

· Х8 – среднегодовой фонд заработной платы;

· Х9 – уровень реализуемости продукции;

· Х10 – индекс постоянного актива (отношение основных средств и прочих внеоборотных активов к собственным средствам);

· Х11 – оборачиваемость оборотных средств;

· Х12 – непроизводственные расходы.

Рис.14 Исходные данные

Требуется:

1. провести факторный анализ следующих переменных: 1,3,5-7, 9, 11,12, выявить и интерпретировать факторные признаки;

2. указать наиболее благополучные и перспективные предприятия.

Выполнение:

1. Провести факторный анализ следующих переменных: 1,3,5-7, 9, 11,12, выявить и интерпретировать факторные признаки.

Факторный анализ – это совокупность методов, которые на основе реально существующих связей объектов (признаков) позволяют выявить латентные (неявные) обобщающие характеристики организационной структуры.

В диалоговом окне факторного анализа выбираем наши переменные, указываем необходимые параметры.

Рис. 15 Полная объясненная дисперсия

По таблице «Полной объясненной дисперсии» видно, что выделены 3 фактора, объясняющие 74,8 % вариаций переменных – построенная модель достаточно хорошая.

Теперь интерпретируем факторные признаки по «Матрице повернутых компонент»: (Рис.16).

Рис. 16 Матрица повернутых компонент

Фактор 1 наиболее тесно связан с уровнем реализации продуктов и имеет обратную зависимость от непроизводственных расходов.

Фактор 2 наиболее тесно связан с удельным весом закупочных материалов в общих расходах и удельным весом потерь от брака и имеет обратную зависимость от премий и вознаграждений на одного работника.

Фактор 3 наиболее тесно связан с уровнем фондоотдачи и оборачиваемость оборотных средств и имеет обратную зависимость от среднегодовой стоимости основных производственных фондов.

2. Указать наиболее благополучные и перспективные предприятия.

Для того, чтобы выявить наиболее благополучные предприятия проведем сортировку данных по 3 факторным признакам по убыванию. (Рис.17)

Наиболее благополучными предприятиями следует считать: 13,4,5, так как в целом по 3 факторам их показатели занимают наиболее высокие и стабильные позиции.

Глава 4. Дискриминантный анализ

Оценка кредитоспособности юридических лиц в коммерческом банке

В качестве значимых показателей, характеризующих финансовое состояние организаций-заемщиков, банком выбраны шесть показателей (табл. 4.1.1):

QR (Х1) - коэффициент срочной ликвидности;

CR (Х2) - коэффициент текущей ликвидности;

EQ/TA (Х3) - коэффициент финансовой независимости;

TD/EQ (Х4) - суммарные обязательства к собственному капиталу;

ROS (Х5) - рентабельность продаж;

FAT (Х6) - оборачиваемость основных средств.

Таблица 4.1.1. Исходные данные


Требуется:

На основе дискриминантного анализа с использованием пакета SPSS определить, к какой из четырех категорий относятся три заемщика (юридических лица), желающие получить кредит в коммерческом банке:

§ Группа 1 - с отличными финансовыми показателями;

§ Группа 2 - с хорошими финансовыми показателями;

§ Группа 3 - с плохими финансовыми показателями;

§ Группа 4 - с очень плохими финансовыми показателями.

По результатам расчета построить дискриминантные функции; оценить их значимость по коэффициенту Уилкса (λ). Построить карту восприятия и диаграммы взаимного расположения наблюдений в пространстве трех функций. Выполнить интерпретацию результатов проведенного анализа.

Ход выполнения:

Для того чтобы определить, к какой из четырех категорий относятся три заемщика, желающие получить кредит в коммерческом банке, строим дискриминантный анализ, который позволяет определить, к какой из ранее выявленных совокупностей (обучающих выборок) следует отнести новых клиентов.

В качестве зависимой переменной выберем группу, к которой может относиться заемщик в зависимости от его финансовых показателей. Из данных задачи, каждой группе присваивается соответствующая оценка 1, 2, 3 и 4.

Ненормированные канонические коэффициенты дискриминантных функций, приведенные на рис. 4.1.1, используются для построения уравнения дискриминантных функций D1(X), D2(X) и D3(X):

3.) D3(X) =


1

(Константа)

Рис. 4.1.1. Коэффициенты канонической дискриминантной функции

Рис. 4.1.2. Лямбда Уилкса

Однако, поскольку значимость по коэффициенту Уилкса (рис. 4.1.2) второй и третей функции более 0.001, их для дискриминации использовать нецелесообразно.

Данные таблицы «Результаты классификации» (рис. 4.1.3) свидетельствуют о том, что для 100 % наблюдений классификация проведена корректно, высокая точность достигнута во всех четырех группах (100 %).

Рис. 4.1.3. Результаты классификации

Информация о фактических и предсказанных группах для каждого заемщика приведены в таблице «Поточечные статистики» (рис. 4.1.4).

В результате дискриминантного анализе высокой вероятностью определена принадлежность новых заемщиков банка к обучающему подмножеству М1 – первый, второй и третий заемщик (порядковый номера 41, 42, 43) отнесены к подмножеству М1 с соответствующими вероятностями 100 %.

Номер наблюдения

Фактическая группа

Наивероятнейшая группа

Предсказанная группа

несгруппированные

несгруппированные

несгруппированные

Рис. 4.1.4. Поточечная статистика

Координаты центроидов по группам приведены в таблице «Функции в центроидах групп» (рис. 4.1.5). Они используются для нанесения центроидов на карту восприятия (рис. 4.1.6).

1

Рис. 4.1.5. Функции в центроидах групп

Рис. 4.1.6. Карта восприятия для двух дискриминантных функций D1(X) и D2(X) (* - центроид группы)

Поле «Территориальной карты» разделено дискриминантными функциями на четыре области: в левой части находятся преимущественно наблюдения четвертой группы заемщиков с очень плохими финансовыми показателями, в правой части - первой группы с отличными финансовыми показателями, в средней и нижней части - третьей и второй группы заемщиков с плохими и хорошими финансовыми показателями соответственно.

Рис. 4.1.7. Диаграмма рассеяния для всех групп

На рис. 4.1.7 приведен объединенный график распределения всех групп заемщиков вместе со своими центроидами; его можно использовать для проведения сравнительного визуального анализа характера взаимного расположения групп заемщиков банка по финансовыми показателями. В правой части графика расположены заемщики с высокими показателями, в левой - с низкой, а в средней части - со средними финансовыми показателями. Поскольку по результатам расчета вторая дискриминантная функция D2(X) оказалась незначима, то различия координат центроидов по этой оси незначительны.

Оценка кредитоспособности физических лиц в коммерческом банке

Кредитный отдел коммерческого банка провел выборочное обследование 30 своих клиентов (физических лиц). На основе предварительного анализа данных, заемщики оценивались по шести показателям (табл. 4.2.1):

Х1 - заемщик брал кредит в коммерческих банках ранее;

Х2 - среднемесячный доход семьи заемщика, тыс. руб.;

Х3 - срок (период) погашения кредита, лет;

Х4 - размер выданного кредита, тыс. руб.;

Х5 - состав семьи заемщика, чел.;

Х6 - возраст заемщика, лет.

При этом по вероятности возврата кредита выявлены три группы заемщиков:

§ Группа 1 - с низкой вероятностью погашения кредита;

§ Группа 2 - со средней вероятностью погашения кредита;

§ Группа 3 - с высокой вероятностью погашения кредита.

Требуется:

На основе дискриминантного анализа с использованием пакета SPSS необходимо классифицировать трех клиентов банка (по вероятности погашения кредита), т.е. оценить принадлежность каждого из них к одной из трех групп. По результатам расчета построить значимые дискриминантных функции, их значимость оценить по коэффициенту Уилкса (λ). В пространстве двух дискриминантных функций для каждой группы построить диаграммы взаимного расположения наблюдений и объединенную диаграмму. Оценить место расположения каждого заемщика на этих диаграммах. Выполнить интерпретацию результатов проведенного анализа.

Таблица 4.2.1. Исходные данные

Ход выполнения:

Для построения дискриминантного анализа в качестве зависимой переменной выберем вероятность своевременного погашения кредита клиентом. Учитывая, что она может быть низкой, средней и высокой, каждой категории присвоим соответствующую оценку 1,2 и 3.

Ненормированные канонические коэффициенты дискриминантных функций, приведенные на рис. 4.2.1, используются для построения уравнения дискриминантных функций D1(X), D2(X):

2.) D2(X) =

Рис. 4.2.1. Коэффициенты канонической дискриминантной функции

Рис. 4.2.2. Лямбда Уилкса

По коэффициенту Уилкса (рис. 4.2.2) для второй функции значимость более 0.001, следовательно, ее для дискриминации использовать нецелесообразно.

Данные таблицы «Результаты классификации» (рис. 4.2.3) свидетельствуют о том, что для 93,3 % наблюдений классификация проведена корректно, высокая точность достигнута в первой и второй группах (100% и 91,7%), менее точные результаты получены в третьей группе (88, 9%).

Рис. 4.2.3. Результаты классификации

Информация о фактических и предсказанных группах для каждого клиента приведены в таблице «Поточечные статистики» (рис. 4.2.4).

В результате дискриминантного анализе высокой вероятностью определена принадлежность новых клиентов банка к обучающему подмножеству М3 – первый, второй и третий клиент (порядковый номера 31, 32, 33) отнесены к подмножеству М3 с соответствующими вероятностями 99%, 99% и 100%.

Номер наблюдения

Фактическая группа

Наивероятнейшая группа

Предсказанная группа

несгруппированные

несгруппированные

несгруппированные

Рис. 4.2.4. Поточечная статистика

Вероятность погашения кредита

Рис. 4.2.5. Функции в центроидах групп

Координаты центроидов по группам приведены в таблице «Функции в центроидах групп» (рис. 4.2.5). Они используются для нанесения центроидов на карту восприятия (рис. 4.2.6).

Поле «Территориальной карты» разделено дискриминантными функциями на три области: в левой части находятся преимущественно наблюдения первой группы клиентов с очень низкой вероятностью погашения кредита, в правой части - третьей группы с высокой вероятностью, в средней - второй группы клиентов со средней вероятностью возврата кредита соответственно.

На рис. 4.2.7 (а – в) отражено расположение клиентов каждой из трех групп на плоскости двух дискриминантных функций D1(X) и D2(X). По этим графикам можно проводить детальный анализ вероятности погашения кредита внутри каждой группы, судить о характере распределения клиентов и оценивать степень их удаленности от соответствующего центроида.

Рис. 4.2.6. Карта восприятия для трех дискриминантных функций D1(X) и D2(X) (* - центроид группы)

Так же на рис. 4.2.7 (г) в той же системе координат приведен объединенный график распределения всех групп клиентов вместе со своими центроидами; его можно использовать для проведения сравнительного визуального анализа характера взаимного расположения групп клиентов банка с разными вероятностями погашения кредита. В левой части графика расположены заемщики с высокой вероятностью погашения кредита, в правой - с низкой, а в средней части - со средней вероятностью. Поскольку по результатам расчета вторая дискриминантная функция D2(X) оказалась незначима, то различия координат центроидов по этой оси незначительны.

Рис. 4.2.7. Расположение наблюдений на плоскости двух дискриминантных функций для групп с низкой (а), средней (б), высокой (с) вероятностью погашения кредита и для всех групп (г)

Список литературы

1. «Многомерный статистический анализ в экономических задачах. Компьютерное моделирование в SPSS», , 2009 г.

2. Орлов А.И. «Прикладная статистика» М.: Издательство «Экзамен», 2004

3. Фишер Р.А. «Статистические методы для исследователей», 1954 г.

4. Калинина В.Н., Соловьев В.И. «Введение в многомерный статистический анализ» Учебное пособие ГУУ,2003;

5. Ахим Бююль, Петер Цёфель, «SPSS: искусство обработки информации» Изд-во DiaSoft, 2005г.;

6. http://ru.wikipedia.org/wiki


выборочной табл. сопряженности макс, правдоподобных оценок:

G 2 = -2 ^ п щ Щт т ■ п ш)

имеет асимптотическое χ 2 -распределе­ние. На этом основана стат. проверка гипотезы о взаимосвязях.

Опыт обработки данных с помощью А.л. показал его эффективность как спо­соба целенаправленного анализа много­мерной табл. сопряженности, содержа­щей (в случае содержательно разумного выбора переменных) огромный, по срав­нению с двухмерными табл., объем ин­тересующей социолога информации. Метод позволяет сжато описать эту табл. (в виде гипотезы о связях) и в то же вре­мя детально проанализировать конкр. взаимосвязь. Ал. обычно применяется многоэтапно, в форме диалога социо­лог-ЭВМ. Т.о., А.л. обладает значитель­ной гибкостью, представляет возмож­ность формулировать разнообразного вида предположения о взаимосвязях, включать опыт социолога в процедуру формального анализа данных.

Лит.: Аптоп Г. Анализ табл. сопря­женности. М., 1982; Типология и клас­сификация в социол. иссл-ях. М., 1982; Bishop Y.M.M. et ai. Discrete Multivariate Analysis. N.Y., 1975; Agresti A. An Introduction to Categorical Data Analysis. N.Y., 1966.

А.А. Мирзоев

АНАЛИЗ МНОГОМЕРНЫЙ СТАТИ­СТИЧЕСКИЙ - разд. статистики ма­тематической, посвященный матем. ме­тодам, направленным на выявление ха­рактера и структуры взаимосвязей между компонентами исследуемого признака многомерного и предназначенным для получения науч. и практических выво­дов. Исходным массивом многомерных данных для проведения А.м.с. обычно служат рез-ты измерения компонент многомерного признака для каждого из объектов исследуемой совокупности, т.е. последовательность многомерных на­блюдений (см. Наблюдение в статисти­ке). Многомерный признак чаще всего интерпретируется как многомерная вели-


чина случайная, а последовательность многомерных наблюдений - как выбор­ка из генеральной совокупности. В этом случае выбор метода обработки исход­ных стат. данных производится на осно­ве тех или иных допущений относитель­но природы закона распределения изучае­мого многомерного признака (см. Рас­пределение вероятностей).

1. А.м.с. многомерных распределений и их осн. характеристик охватывает си­туации, когда обрабатываемые наблюде­ния имеют вероятностную природу, т.е. интерпретируются как выборка из соотв. генеральной совокупности. К осн. зада­чам этого подраздела относятся; оцени­вание статистическое исследуемых мно­гомерных распределений и их осн. пара­метров; иссл-е свойств используемых стат. оценок; иссл-е распределений веро­ятностей для ряда статистик, с помощью к-рых строятся стат. критерии проверки разл. гипотез о вероятностной природе анализируемых многомерных данных (см. Проверка статистических гипотез).

2. А.м.с. характера и структуры взаи­мосвязей компонент исследуемого мно­гомерного признака объединяет понятия и рез-ты, присущие таким методам и моделям, как анализ регрессионный, ана­лиз дисперсионный, анализ ковариацион­ный, анализ факторный, анализ латентно-структурный, анализ логяшейный, поиск взаимодействий. Методы, принадлежа­щие к этой гр., включают как алгорит­мы, осн. на предположении о вероятно­стной природе данных, так и методы, не укладывающиеся в рамки к.-л. вероят­ностной модели (последние чаще отно­сят к методам анализа данных).

3. А.м.с. геометрической структуры исследуемой совокупности многомерных наблюдений объединяет понятия и рез-ты, свойственные таким моделям и методам, как анализ дискриминантиый, анализ кластерный (см. Методы класси­фикации, Шкала). Узловым для этих мо­делей явл. понятие расстояния либо ме­ры близости между анализируемыми элементами как точками нек-рого про-

АНАЛИЗ ПРИЧИННЫЙ


странства. При этом анализироваться могут как объекты (как точки, задавае­мые в признаковом пространстве), так и признаки (как точки, задаваемые в «объ­ектном» пространстве).

Прикладное значение А.м.с. состоит в осн. в обслуживании след. трех про­блем: стат. иссл-я зависимостей между рассматриваемыми показателями; клас­сификации элементов (объектов) или признаков; снижения размерности рас­сматриваемого признакового простран­ства и отбора наиб, информативных признаков.

Лит.: Стат. методы анализа социол. информации. М., 1979; Типология и клас­сификация в социол. иссл-ях. М., 1982; Интерпретация и анализ данных в соци­ол, иссл-ях. М., 1987; Айвазян С.А., Мхи-тарян В. С. Прикладная статистика и ос­новы эконометрики: Учеб. М., 1998; Сош-никова Л.А. и др. Многомерный стат. ана­лиз в экономике. М., 1999; Дубров А.М., Мхитарян В. С, Трошин Л.И. Многомер­ные стат. методы для экономистов и ме­неджеров. М., 2000; Ростовцев B.C., Кова­лева Т.Д. Анализ социол. данных с приме­нением стат. пакета SPSS. Новосибирск, 2001; Тюрин Ю.Н., Макаров А. А. Анализ данных на компьютере. Ы., 2003; Крыш-тановский А. О. Анализ социол. данных с помощью пакета SPSS. Μ., 2006.

ЮН. Толстова

АНАЛИЗ ПРИЧИННЫЙ - методы мо­делирования причинных отношений меж­ду признаками с помощью систем стат. уравнений, чаще всего регрессионных (см. Анализ регрессионный). Существуют и др. названия этой довольно обширной и постоянно изменяющейся области ме­тодов: путевой анализ, как впервые на­звал его основоположник С. Райт; мето­ды структурных эконометрических урав­нений, как принято в эконометрике, и др. Осн. понятиями А.п. явл.: путевая (структурная, причинная) диаграмма, причинный (путевой) коэффициент, прямые, косвенные и мнимые компо­ненты связи между признаками. Ис­пользуемое в А.п. понятие «причинное отношение* не затрагивает сложных фи-


лос. проблем, связанных с понятием «причинность». Причинный коэффици­ент опред. вполне операционально. Ма-тем. аппарат дает возможность проверки наличия прямых и косвенных причин­ных связей между признаками, а также выявления тех компонент корреляцион­ных коэффициентов (см. Корреляция), к-рые связаны с прямыми, косвенными и мнимыми связями.

Путевая диаграмма отражает графи­чески гипотетически предполагаемые причинные, направленные связи между признаками. Система признаков с одно­направленными связями называется ре­курсивной. Нерекурсивные причинные системы учитывают также и обратные связи, напр., два признака системы мо­гут быть одновременно и причиной, и следствием по отношению друг к другу. Все признаки делятся на признаки-след­ствия (зависимые, эндогенные) и при­знаки-причины (независимые, экзоген­ные). Однако в системе уравнений эндо­генные признаки одного из уравнений могут быть экзогенными признаками др. уравнений. В случае четырех признаков рекурсивная диаграмма всех возможных связей между признаками имеет вид:

х 2
/ N
*1 К
г
к S

Построение диаграммы связей явл. необходимой предпосылкой матем. фор­мулирования системы стат. уравнений, отражающей влияния, представленные на диаграмме. Осн. принципы построе­ния системы регрессионных уравнений проиллюстрируем на примере тех же че­тырех признаков. Идя по ходу стрелок, начиная с Хи находим первый эндоген-

АНАЛИЗ ПРИЧИННЫЙ


ный признак и отмечаем те признаки, к-рые на него влияют как прямо (непо­средственно), так и косвенно (опосредо­ванно) и через др. признаки. Первое стан­дартизированное регрессионное уравне­ние соответствует первому эндогенному признаку Xj и выражает зависимость Χι от тех признаков, к-рые на него влияют, т.е. от Χγ. Т.о., первое уравнение имеет вид: Χι = bi\X\.

Затем выявляем второй эндогенный признак, к-рый имеет направленные на него связи. Это признак Aj, ему соответ­ствуют экзогенные переменные Х\ и Χι, поэтому второе регрессионное уравнение в стандартизированном виде формулиру­ется так: Aj = ЬцХ\ + ЬпХг и т.д. С учетом ошибок измерения U система стандарти­зованных регрессионных моделей для нашей конкретной причинной диа­граммы имеет вид: Х\ = Ui, А? =

- Ь->\Х\ + Ui, Хт, = 631ΑΊ + byiXi + Uy, Χα -

- baXi + binXi + Й43А3 + Щ. Чтобы оце­нить коэффициенты b, s , необходимо ее решить. Решение существует при усло­вии, что данные удовлетворяют нек-рым естеств. стат. требованиям. Ь$ называют­ся причинными коэффициентами и час­то обозначаются как Ру. Т.о., Р# показы­вает ту долю изменения вариации эндо­генного признака;, к-рая происходит при изменении экзогенного признака j на единицу стандартного отклонения этого признака при условии, что влия­ние остальных признаков уравнения ис­ключается (см. Анализ регрессионный). Иначе говоря, Р,у есть прямой эффект признака j на признак г. Косвенный эф­фект признака j на;) вычисляется на ос­нове учета всех путей влияния j на i за исключением прямого.

На диаграмме прямое влияние перво­го признака на четвертый схематически представление прямой стрелой, непо­средственно идущей от Χι к Xt, символи­чески изображаемое как 1->4; оно равно коэффициенту причинного влияния Р, Х 2 , ..., Х Р. Строго регрессионную зависимость можно определить след. об­разом.

Пусть У, Х\, Хг, ..., Х р - случайные
величины с заданным совместным рас­
пределением вероятностей.
Если для каж­
дого набора значений Χ λ =х\, Х 2 = хг, ...,
Х р = х р определено условное матем. ожи­
дание Υ(χ\, Х2, ..., Хр) - E(Y/(X] = xj,
Χι = Х2, ..., Х р = Хр)), то функция Υ(Χ],
Х2,
..., Хр) называется регрессией величи­
ны У по величинам Х\, Хг, ..., Х р, а ее
график - линией регрессии У по Х\, Хг,
..., Х р,
или уравнением регрессии. Зави­
симость У от ΛΊ, Хг ....... Х р проявляется в

изменении средних значений Упри из­
менении Х\, Хг ........ Хр. Хотя при каждом

фиксированном наборе значений X] - xj, Хг = хг, » , Хр ~ Хр величина Τ остается случайной величиной с опред. рассеяни­ем. Для выяснения вопр., насколько точно регрессия оценивает изменение У при изменении ΑΊ, Хг, ..., Х р, использует­ся средняя величина дисперсии У при разных наборах значений Х\, Хг, ..., Хр (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

На практике линия регрессии чаще всего ищется в виде линейной функции У = Ьй + biXi + ЬгХг + - + ЬрХр (линейная регрессия), наилучшим образом прибли­жающей искомую кривую. Делается это с помощью метода наименьших квадра­тов, когда минимизируется сумма квад­ратов отклонений реально наблюдаемых У от их оценок У (имеются в виду оцен­ки с помощью прямой линии, претен­дующей на то, чтобы представлять ис­комую регрессионную зависимость): w

У (У -У) => min (Ν - объем выборки), ы

Этот подход основан на том известном факте, что фигурирующая в приведен­ном выражении сумма принимает ми-ним. значение именно для того случая, когда У= Υ(χ\, хг, --, х Р). Применение