Случайные величины. Дискретная случайная величина.Математическое ожидание

Определение случайной величины. Многие случайные собы­тия могут быть оценены количественно случайными величинами.

Случайной называют такую величину, которая принима­ет значения в зависимости от стечения случайных обсто­ятельств.

Случайными величинами являются: число больных на приеме у врача, число студентов в аудитории, число рождений в городе, продолжительность жизни отдельного человека, скорость моле­кулы, температура воздуха, погрешность в измерении какой-либо величины и др. Если пронумеровать шары в урне примерно так, как это делают при разыгрывании тиража лото, то произвольное вынимание шара из урны покажет число, являющееся случайной величиной.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает счетное множество значений: число букв на произ­вольной странице книги, энергия электрона в атоме, число волос на голове человека, число зерен в колосьях, число молекул в вы­деленном объеме газа и т. п.

Непрерывная случайная величина принимает любые зна­чения внутри некоторого интервала: температура тела, масса зерен в колосьях пшеницы, координата места попадания пули в цель (принимаем пулю за материальную точку) и др.

Распределение дискретной случайной величины. Диск­ретная случайная величина считается заданной, если указаны ее возможные значения и соответствующие им вероятности. Обозна­чим дискретную случайную величину X, ее значения x 1 x 2 , ., а вероятности Р(х 1) = p 1, Р(х 2) = р 2 и т. д. Совокупность X и Р называется распределением дискретной случайной величи­ны (табл. 1).

Таблица 1

Случайной величиной является номер вида спорта в игре «Спортло-10». Общее число видов равно 49. Указать распределение этой случайной величины (табл. 3).

Таблица 3


Значение 1 = 0 соответствует такому случаю, при котором трижды подряд событие А не происходило. Вероятность этого сложного события, по теореме умножения вероятностей (2.6), равна

Значение I = 1 относится к случаю, при котором событие А про­изошло в одном из трех испытаний. По формуле (2.6) получаем

Так как при l = 1 происходят также и два других сложных со­бытия: (А и А и А)и(А и А и А), то необходимо, воспользовав­шись теоремой сложения вероятностей (2.4), получить полную ве­роятность для l = 1, сложив трижды предыдущее выражение:

Значение I = 2 соответствует случаю, при котором событие А произошло в двух из трех испытаний. Рассуждениями, подобны­ми приведенным выше, получим полную вероятность для этого случая:

При 1 = 3 событие А появляется во всех трех испытаниях. Ис­пользуя теорему умножения вероятностей, находим


В общем случае биномиальное распределение позволяет опре­делить вероятность того, что событие А произойдет l раз при п испытаниях:

На основе многолетних наблюдений вызов врача в данный дом оце­нивается вероятностью 0,5. Найти вероятность того, что в течение шести дней произойдет четыре вызова врача; Р(А) = 0,5, п = 6,1 = 4. Т Воспользуемся формулой (2.10):

Числовые характеристики дискретной случайной величи­ны. Во многих случаях, наряду с распределением случайной ве­личины или вместо него, информацию об этих величинах могут дать числовые параметры, получившие название числовых ха­рактеристик случайной величины. Рассмотрим наиболее упот­ребительные из них.

Математическое ожидание (среднее значение) случайной величины есть сумма произведений всех возможных ее значе­
ний на вероятности этих значений:

Пусть при большом числе испытаний п дискретная случайная величина X принимает значения x v x 2 , ..., х п соответственно m 1 , m г, ..., т п раз. Среднее значение равно

Если п велико, то относительные частоты т 1 /п, т 2 /п, ... будут стремиться к вероятностям, а средняя величина - к математиче­скому ожиданию. Именно поэтому математическое ожидание час­то отождествляют со средним значением.

Найти математическое ожидание для дискретной случайной вели­чины, которая задается цифрой на грани при бросании игральной кости (см. табл. 2).

Используем формулу (2.11):

Найти математическое ожидание для дискретной случайной вели­чины, которая определяется тиражом «Спортлото» (см. табл. 3). Согласно формуле (2.11), находим


Возможные значения дискретной случайной величины рассеяны во­круг ее математического ожидания, часть из них превышает М{Х), часть - меньше М{Х). Как оценить степень разброса случайной величины отно­сительно ее среднего значения? Может показаться, что для решения та­кой задачи следует вычислить отклонения всех случайных величин от ее математического ожидания X - М(Х), а затем найти математическое ожидание (среднее значение) этих отклонений: М[Х - М(Х)]. Вез доказа­тельства отметим, что эта величина равна нулю, так как отклонения слу­чайных величин от математического ожидания имеют как положитель­ные, так и отрицательные значения. Поэтому целесообразно учитывать либо абсолютные значения отклонений М[Х - М (X)], либо их квадраты М[Х - М(Х)] 2 . Второй вариант оказывается предпочтительнее, так при­ходят к понятию дисперсии случайной величины.

Дисперсией случайной величины называют математиче­ское ожидание квадрата отклонения случайной величины от ее математического ожидания:


Она означает, что дисперсия равна разности между математи­ческим ожиданием квадрата случайной величины X и квадратом ее математического ожидания.

Найти дисперсию случайной величины, которая задается цифрой на грани при бросании игральной кости (см. табл. 2).

Математическое ожидание этого распределения равно 3,5. Запишем значения квадратов отклонения случайных величин от математического ожидания: (1 - 3,5) 2 = 6,25; (2 - 3,5) 2 = 2,25; (3 - 3,5) 2 = 0,25; (4 - 3,5) 2 = 0,25; (5 - 3,5) 2 = 2,25; (6 - 3,5) 2 = 6,25. По формуле (2.12) с учетом (2.11) няходим дисперсию:

Как следует из (2.12), дисперсия имеет размерность квадрата размерности случайной величины. Для того чтобы оценивать расстояние случайной величины в единицах той же размерности, вводят понятие среднего квадратического отклонения, под которым понимают квадратный корень из дисперсии:

Распределение и характеристики непрерывной случайной величины. Непрерывную случайную величину нельзя задать тем же законом распределения, что и дискретную. В этом случае поступают следующим образом.

Пусть dP - вероятность того, что непрерывная случайная величина X принимает значения между х и х + dx. Очевидно, что Ирм больше интервал dx, тем больше и вероятность dP: dP ~ dx. Шроме того, вероятность должна зависеть и от самой случайной Величины, вблизи которой расположен интервал, поэтому

где f(x) - плотность вероятности, или функция распределения вероятностей. Она показывает, как изменяется вероятность, отнесенная к интервалу dx случайной величины, в зависимости от значения самой этой величины:

Интегрируя выражение (2.15) в соответствующих пределах, находим вероятность того, что случайная величина принимает какое-либо значение в интервале (ab):

Условие нормировки для непрерывной случайной величины имеет вид

Как видно из (2.19), эта функция равна вероятности того, что случайная величина принимает значения, меньшие х:

Для непрерывной случайной величины математическое ожи­дание и дисперсия записываются соответственно в виде

Определение . Случайной величиной называют такую величину, которая в результате эксперимента принимает какое-либо одно значение из множества ее возможных значений, причем до экс­перимента невозможно предсказать, какое именно.

Случайными величинами являются, например, количество оч­ков, выпадающих при бросании игрального кубика, число посе­тителей аптеки в течение дня, количество яблок на дереве и т. д.

Случайными величинами являются также температура боль­ного в некоторое наугад выбранное время суток, масса наугад выбранной таблетки некоторого препарата, рост наугад выбран­ного студента и т. д.

О

днако с математической точки зрения между такими слу­чайными величинами, как, например, число посетителей аптеки в течение дня (обозначим эту случайную величину X 1) и рост наугад выбранного студента из некоторой группы студентов (ве­личина Х 2), имеется принципиальное различие, а именно: для величины X 1 можно перечислить все ее возможные значения (1, 2, 3, 4, 5, 6, ...), тогда как для величины Х 2 этого сделать нельзя, поскольку эта величина в результате измерения может принять любое значение из отрезка, где

и - соответ­ственно минимальный и максимальный рост студентов группы.

Случайные величины принято обозначать прописными буква­ми латинского алфавита - X, Y, Z и т. д., а их возможные значения - соответствующими строчными буквами с числовыми индексами. Например, значения случайной величины xобозна­чают следующим образом:x 1 ,x 2 ,x 3 и т. д.

Понятие дискретных и непрерывных случайных величин

Определение . Случайная величина называется дискретной, если совокупность всех ее возможных значений представляет собой конечное или бесконечное, но обязательно счетное множество значений, т. е. такое множество, все элементы которого могут быть (по крайней мере, теоретически) пронумерованы и выписаны в соответствующей последовательности.

Определение . Случайная величина называется непрерывной, если множество ее возможных значений представляет собой не­который конечный или бесконечный промежуток числовой оси.

Исходя из этих определений, такие из перечисленных выше случайных величин, как количество очков, выпадающих при бро­сании игрального кубика, число посетителей аптеки в течение дня, количество яблок на. дереве, являются дискретными случай­ными величинами, а такие, как температура больного в фикси­рованное время суток, масса наугад выбранной таблетки некото­рого препарата, рост наугад выбранного студента, - непрерыв­ными величинами.

Дискретные случайные величины

Рассмотрим подробнее дискретные случайные величины , причем, как правило, будем ограничивать рассмотрение такими случай­ными величинами, у которых количество возможных значений конечно.

Наиболее полную информацию о дискретной случайной вели­чине дает закон распределения этой величины.

Определение . Законом распределения дискретной случайной величины называется соответствие между всеми возможными значениями этой случайной величины и соответствующими им вероятностями.

Закон распределения дискретной случайной величины часто задают в виде двухстрочной таблицы, в первой строке которой перечислены все возможные значения этой величины (как правило, в порядке возрастания), а во второй - соответствующие этим значениям вероятности таблице 1:

Пример 2. Имеется десять студенческих групп, насчитыва­ющих соответственно 12, 10, 11, 8, 12, 9, 10, 8, 10 и 11 студентов. Составить закон распределения случайной величины X, опреде­ляемой как число студентов в наугад выбранной группе.

Решение. Возможными значениями рассматриваемой случай­ной величины Х являются следующие (в порядке возрастания):

8, 9, 10, 11 и 12.

Поскольку случайная величина Х принимает значение, равное 8, в том случае, если наугад выбранной группой окажется груп­па из 8 студентов (назовем это событием А), вероятность того, что случайная величина Х примет значение
, равна вероят­ности этого случайного события:
.

Вероятность же случайного события А в соответствии с классическим определением вероятности равна
по­скольку из 10 групп две насчитывают по 8 студентов.

Таким образом, для вероятности значения получаем:

.

Аналогично можно найти вероятности остальных значений слу­чайной величины X:

что позволяет составить искомый закон распределения (таблица 2):

Закон распределения дискретной случайной величины может быть задан также с помощью формулы, позволяющей для каж­дого возможного значения этой величины определить соответ­ствующую вероятность.

Дискретные и непрерывные случайные величины

Как правило, при изготовлении продукции на процесс её производства оказывает влияние множество различных факторов, в результате чего наблюдается разброс значений показателей качества продукцию. Таким образом, показатели качества изготовляемой продукции или оказываемых услуг следует рассматривать как случайные величины.

Случайной величиной называется такая величина, которая в результате испытаний в границах определенного интервала может принимать различные числовые значения (согласно СТБ ГОСТ Р 50779.10 случайная величина - переменная, которая может принимать любое значение из заданного множества значений и с которой связано распределение вероятностей ).

Дискретными случайными величинами называются такие, которые в результате испытаний могут принимать лишь отдельные, изолированные значения и не могут принимать значения промежуточные между ними. Например, количество негодных деталей в партии может быть только целым положительным числом 1, 2, 3 и т.д., но не может быть 1,3; 1,7 и т.п.

Непрерывной случайной величиной называется такая величина, которая в результате испытаний может принимать любые численные значения из непрерывного ряда их возможных значений в границах определенного интервала.

Например, действительные размеры деталей, обработанных на станке, являются случайными величинами непрерывного типа, так как они могут принять любое численное значение в определенных границах.

Возможности случайных величин принимать при испытаниях те или иные численные значения оцениваются при помощи вероятностей.

Совокупность значений случайных величин, расположенных в возрастающем порядке с указанием их вероятностей для каждого из значений, называется распределением случайных величин (согласно СТБ ГОСТ Р 50779.10 распределение – это функция, определяющая вероятность того, что случайная величина примет какое-либо заданное значение или будет принадлежать заданному множеству значений).

Распределение случайной величины можно представить в табличном, графическом виде и при помощи статистических оценок.

При представлении распределения случайной величины в табличном виде каждому номеру исследуемой единицы продукции (номеру измерения) соответствует значение показателя качества для данной единицы продукции (результат измерения).

При представлении распределения случайной величины в графическом виде строят график распределения в координатах значение случайной величины – вероятность (частота, частость) значения случайной величины.

На рисунке ниже показаны графики распределения дискретной и непрерывной случайных величин.

Рисунок - График распределения дискретной случайной величины

Рисунок - График распределения непрерывной случайной величины

Различают теоретические и эмпирические распределения случайных величин. В теоретических распределениях оценка возможных значений случайной величины производится при помощи вероятностей, а в эмпирических - при помощи частот или частостей, полученных в результате испытаний.

Следовательно, эмпирическим распределением случайной величины называется совокупность экспериментальных ее значений, расположенных в порядке возрастания, с указанием частот или частостей для каждого из значений(согласно СТБ ГОСТ Р 50779.10 распределение частот – это эмпирическое отношение между значениями признака и его частотами или его относительными частотами).

Таблица. Пример табличного представления теоретического распределения дискретной случайной величины

Графически эмпирическое распределение дискретной случайной величины можно представить в виде столбиковой диаграммы , образуемой набором столбцов равной ширины, высоты которых пропорциональны частотам дискретных значений случайной величины.

Рисунок - Столбиковая диаграмма дискретной случайной величины.

Если случайная величина является непрерывной, то возникают некоторые сложности с представлением ее распределения в виде таблицы или графика. Поэтому на практике при изучении случайных величин непрерывного типа полученные значения разбивают на равные интервалы с таким расчетом, чтобы значение интервала было несколько больше погрешности измерения исследуемой величины. Затем подсчитывают частоты не по действительным значениям случайной величины, а по интервалам. Поэтому таблица эмпирического распределения случайной величины непрерывного типа будет иметь следующий вид.

Таблица. Эмпирическое распределение случайной величины непрерывного типа.

Интервал значений Х

Среднее арифметическое значение

Частота f i

Частость m i

160,031 - 160,033

160,033 - 160,035

160,035 - 160,037

160,037 - 160,039

160,039 - 160,041

160,041 - 160,043

160,043 - 160,045

160,045 - 160,047

f i = 100

m i = 1

Эмпирическое распределение случайной непрерывной величины графически может быть представлено в виде гистограммы распределения, полигона частот или полигона кумулятивных частот.

Гистограмма распределения представляет собой совокупность соприкасающихся прямоугольников, основания которых равны интервалам разбиения непрерывной случайной величины, а площади пропорциональны частотам, с которыми значения случайной величины попадают в эти интервалы (согласно СТБ ГОСТ Р 50779.10 гистограмма (распределения) – это графическое представление распределения частот для количественного признака, образуемое соприкасающимися прямоугольниками, основаниями которых служат интервалы классов, а площади пропорциональны частотам этих классов).

Рисунок - Гистограмма распределения случайной непрерывной величины.

Полигон частот – это ломаная линия, получаемая при соединении точек, абсциссы которых равны серединам интервалов разбиения, а ординаты – соответствующим частотам.

Рисунок - Полигон частот случайной непрерывной величины.

Полигон кумулятивных частот – это ломаная линия, получаемая при соединении точек, абсциссы которых равны верхним границам интервалов разбиения, а ординаты – либо кумулятивным частотам, либо кумулятивным частостям (кумулятивным относительным частотам).

Рисунок - Полигон кумулятивных частот случайной непрерывной величины.

При теоретических описаниях случайных величин непрерывного типа используется функция распределения. Теоретическое распределение случайной непрерывной величины графически может быть представлено в виде интегральной, обратной интегральной, дифференциальной функций распределения и функции интенсивности .

Пусть Х - случайная величина, а х - какое-либо действительное число (при этом Х < х ). Событию Х < х отвечает вероятность Р(Х < х), которая является функцией F(х), т.е.

Р(Х < х) = F(х)

F(Х) называется функцией распределения вероятностей случайной величины или интегральной функцией распределения.

Для дискретной случайной величины интегральная функция распределения F(Х) легко определяется по таблице или графику.

Таким образом, для приведенного выше примера распределения дискретной случайной величины (при Х < 4):

F(X) = Р( Х ) = P(Х=1 ) + P(Х=2 ) + P(Х=3 ) = 1/30 + 4/30 +15/30 = 19/30

График интегральной функции распределения дискретной случайной величины будет иметь вид ступенчатой кривой. Ординаты кривой для любого значения Х будут представлять сумму вероятностей предшествующих значений.

Рисунок - Интегральная функция распределения дискретной случайной величины

Вероятность того, что случайная величина при испытаниях окажется в границах двух заданных значений х 1 и х 2 (х 2 > х 1) равна приращению интегральной функции на этом участке, т.е.

Р(х 1 ≤ Х ≤ х 2 ) = Р(Х < х 2 ) - Р(Х < х 1 ) = F(Х 2 ) - F(Х 1 )

Если обратиться к выше приведенному примеру распределения дискретной случайной величины, то при х1= 2 и х2 = 3:

Р(2≤Х≤3) = Р(Х < 3) - Р(Х < 2)= F(Х2) - F(Х1)= 4/30-1/30 = 3/30

Для непрерывной случайной величины график интегральной функции распределения будет иметь вид монотонно возрастающей кривой. На практике с помощью интегральной функции распределения определяют теоретические частоты распределения.

Рисунок - Интегральная функция распределения

непрерывной случайной величины

Обратная интегральная функция распределения равна разности между единицей и интегральной функции распределения.

Плотностью распределения (дифференциальной функцией распределения) случайной величины называют первую производную от интегральной функции распределения:

Для аналитического описания непрерывной случайной величины в теории надежности используют функцию интенсивности , равную отношению дифференциальной функции распределения к обратной интегральной функции распределения:

Рисунок - Функция интенсивности непрерывной случайной величины.

Тема 3.

Случайные величины и функции распределения

Понятие случайной величины.

Понятие случайной величины

Функция распределения случайной величины, ее свойства

Случайные величины с дискретным распределением

Понятие случайной величины с дискретным распределением

Закон распределения дискретной случайной величины.

Примеры дискретных распределений

Случайные величины с абсолютно непрерывным распределением

Понятие случайной величины с абсолютно непрерывным распределением

Закон распределения абсолютно непрерывной случайной величины. Плотность, ее свойства

Примеры абсолютно непрерывных распределений

Понятие случайного вектора.

Понятие случайного вектора

Независимые случайные величины

Совместное распределение случайных величин

Понятие случайной величины.

С момента возникновения теории вероятностей ее основной задачей было изучение не вероятностных свойств экспериментов со случайными исходами, а связанных с этими экспериментами числовых величин, которые естественно назвать случайными величинами . Например, мы можем интересоваться не парами чисел на верхних гранях кубиков, а их суммой; числом успехов или числом неудач до первого успеха в схеме Бернулли.

Часто в литературе можно встретить вариации на тему следующего определения: Случайной величиной называют переменную величину, которая в зависимости от исходов испытания принимает значения, зависящие от случая.

Таким образом, случайная величина – это числовая величина, значение которой зависит от того, какой именно (элементарный) исход произошел в результате эксперимента со случайным исходом. Множество всех значений, которые случайная величина может принимать, называют множеством возможных значений этой случайной величины.

Мы приведем более строгое определение, поскольку понятие случайной величины является одним из тех ключевых понятий, которые связывают теорию вероятностей с математическим анализом и составляют понятийную основу математической статистики.

Определение . Случайной величиной называется функция Х = Х(ω), определенная на пространстве элементарных событий Ω, для которых событие {Х < х} = {ω: Х(ω) < х} принадлежит σ-алгебре событий A для любого вещественного х.

Условие {Х < х} єA дает возможность рассматривать вероятности событий {Х < х}, поскольку вероятности определены только на множествах из А . Кроме того, через события {Х < х}, х є (-∞, ∞) с помощью известных операций над событиями можно выразить сколь угодно сложное событие, связанное со случайной величиной Х. Такое событие также будет принадлежать σ-алгебре событий A и, следовательно, для него определена вероятность.

Замечание. Таким образом, случайная величина – это функция, областью определения которой является пространство элементарных событий Ω, а множеством значений – числовое множество, возможно, все множество действительных чисел R .

σ-алгебра событий A – это область определения вероятности, если рассматривать ее как функцию.

Замечание . «Термин «случайная величина» несколько неточен, более подходящим был бы термин «Функция случая» , независимой переменной является точка в пространстве элементарных событий, т.е. исход эксперимента или случай». (В.Феллер «Введение в теорию вероятностей», гл. IX )

Случайные величины обозначаются буквами греческого алфавита:(кси),(эта), или заглавными буквами латинского алфавита X, Y, …Значения случайной величины будем записывать в виде конечной или бесконечной последовательностиx 1 ,x 2 ,,x n ,; y 1 ,y 2 ,,y n ,

Замечание . Ранее мы ввели понятие вероятности применительно к некоторым событиям. Теперь мы переходим к разговору о функциях. Самое очевидное событие, которое можно связать с понятием функции – это принятие ею некоторого значения (конкретного или принадлежащего промежутку)

Для исследования вероятностных свойств случайной величины необходимо знать правило, позволяющее находить вероятность того, что случайная величина примет значение из подмножества ее значений. Любое такое правило называют законом распределения вероятностей или распределением (вероятностей) случайной величины. (при этом слово «вероятностей» обычно опускают)

Общим законом распределения, присущим всем случайным величинам, является функция распределения .

Определение. Вся совокупность вероятностей Р{Х < х}, х є (-∞, ∞) задает закон распределения случайной величины Х в общем случае. Часто для краткости закон распределения случайной величины называют просто распределением случайной величины.

Определение. Функция F(x) = Р{Х < х}, х є (-∞, ∞) называется функцией распределения случайной величины Х.

Значение функции распределения в точке х равно вероятности события {Х < х}, то есть события, состоящего из тех и только тех элементарных исходов ω, для которых Х < х.

Обычно говорят, что значение функции распределения в точке х равно вероятности того, что случайная величина Х примет значение, меньшее х.

Геометрически это означает следующее: F(x) – вероятность того, что случайная величина Х примет значение, которое изображается точкой на числовой прямой, расположенной слева от точки х.

Замечание . Функцию распределения называют также интегральной функцией, или интегральным законом распределения случайной величины Х

Функция распределения обладает следующими свойствами :

    0≤ F(x)≤1 (т.к. по определению, функция распределения является вероятностью)

    F(x 1) ≤ F(x 2) при x 1 < x 2 (т.е. F(x) – неубывающая функция)

    lim F(x) = 0 при x → - ∞ , lim F(x) = 1 при x → + ∞

    P (x 1 ≤ X ≤ x 2) = F(x 1) - F(x 2)

    F(x) – непрерывная слева функция, т.е. F(x) = F(x - 0), где F(x - 0) = lim F(y) при y → x - 0 (левосторонний предел)

Замечание . Для того, чтобы подчеркнуть, какой именно случайной величине принадлежит функция распределения F(x), этой функции иногда приписывают нижний индекс, обозначающий конкретную случайную величину. Например, F X (x) = Р{Х < х}

Замечание. В некоторых изданиях функция распределения определяется как F(x) = Р{Х ≤ х}. Такое определение ничего не меняет по существу понятия функции распределения, меняется лишь последнее, пятое свойство. Функция в таком случае оказывается непрерывной справа.

Отступление: «Что такое функция?»

Пусть нам даны два множества Х и Y, причем Y – числовое множество. И пусть задано правило f, по которому каждому элементу (точке) множества Х ставится в соответствие (один и только один) элемент (число) множества Y. Правило f вместе с множествами X и Y задают функцию f. Запись y=f(x) означает, что к некоторой точке x множества X применили правило f, и в результате получили точку y из множества Y. X называется аргументом (независимой переменной), а y – значением (зависимой переменной) функции f в точке х. Множество Х называется областью определения (областью задания) функции, говорят, что функция задана на этом множестве, множество Y называется множеством значений функции. Множество Х совершенно необязательно является числовым множеством. Так, случайная величина – это функция, заданная на нечисловом пространстве элементарных событий.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, причем какое именно заранее неизвестно.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями. Этот закон задается в виде таблицы, формулы или графика.

Для дискретных случайных величин одним из наиболее употребительных является так называемый биномиальный закон распределения, к которому приводит схема Бернулли повторения испытаний. Формула (8) и является аналитическим выражением этого закона.

Пример 11 .

По каналу связи передается сообщение с помощью кода, состоящего из двух знаков. Вероятность появления первого равна 2/3. Передано три знака. Найти закон распределения для появлений первого знака.

Решение.

По условию n =4, р =2/3, q =1/3. Возможные значения числа появлений первого знака: 0, 1, 2 и 3. Найдем их вероятности по формуле (8):

Этот закон можно представить в виде таблицы

X
P1/27 1/27 2/9 4/9 8/27

Функцией распределения называют функцию, определяющую вероятность того, что случайная величина Х в результате испытания примет значение меньше х, то есть

Геометрически это означает, что случайная величина с вероятностью р примет значение, которое на числовой оси изображается точкой, лежащей левее х.

Для непрерывной случайной величины функция распределения есть непрерывная кусочно-дифференцируемая функция. Из определения выводятся основные свойства:

1. Значения функции распределения принадлежат отрезку , т.е.

2. F (x ) - неубывающая функция, то есть , если

3. Вероятность того, что случайная величина примет значение, заключенное на промежутке [а,b [, равна приращению функции распределения на этом промежутке

Для непрерывной случайной величины вероятность принять отдельное значение равно нулю. Поэтому для непрерывных случайных величин

Пример 12 .

Случайная величина Х задана функцией распределения

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее отрезку [-1;0,5].

Решение.

Из условия следует, что Х - непрерывная случайная величина, которая может принимать значение от 0 до 1.

Плотностью распределения вероятностей непрерывной случайной величины Х называют первую производную от функции распределения

Функция распределения F(x) есть одна из первообразных для плотности распределения. Исходя из определения плотности или дифференциального закона распределения и ее связи с функцией распределения, легко показать следующие свойства:

1. Плотность распределения непрерывной случайной величины - неотрицательная функция

2. Вероятность попадания случайной величины Х в интервал равна

(16)

3. Из свойства 2 получим выражение для функции распределения

(17)

4. Условие нормировки

(18)

Пример 13. Дискретная величина Х задана таблицей

Х
Р 0,1 0,3 0,4 0,2

Найти функцию распределения и построить ее график.

Решение.

1. Если , то , так как Х не может принимать значение меньше 2.

В этом случае в интервал (-¥, х) попадает только одно значение случайной величины Х (X =2). Поэтому

Для любого значения аргумента х функции F(x), удовлетворяющего данному неравенству, в интервал (-¥, х ) попадает два значения случайной величины (X =2 и X =3). Поскольку события, что Х примет данные значения являются несовместными (или X =2 или X =3), то

4. Аналогично если

Следовательно, функция распределения будет иметь вид

Строим график функции распределения

Рис. 1 - График функции распределения

дискретной случайной величины

Пример 14 . Плотность распределения ошибки измерения

Случайная величина - величина, значение которой получается в результате пересчета или измерений и не может быть однозначно определено условиями его возникновения.

То есть случайная величина представляет собой числовые случайные события.

Случайные величины подразделяют на два класса:

Дискретные случайные величины - значения этих величин представляют собой натуральные числа, которым как отдельным событиям сопоставляются частоты и вероятности.

Непрерывные случайные величины - могут принимать любые значения из некоторого промежутка (интервала). Учитывая, что на промежутке от Х1 до Х2 числовых значений бесконечное множество, то вероятность того, что случайная величина ХiЄ(Х1,Х2) примет определенное значение, бесконечно мала. Учитывая, что невозможно перечислить все значения непрерывной случайной величины, на практике пользуются средним значением интервала (Х1,Х2).

Для дискретных случайных величин функция у=Р(х) - называется функцией распределения случайной величины и имеет график - его называют многоугольник распределения.

Различают следующие группы числовых характеристик: характеристики положения (математическое ожидание, мода, медиана, квантиль и др.), рассеивания (дисперсия, среднеквадратичное отклонение и др.), характеристики формы плотности распределения (показатель асимметрии, эксцесса и др.).

Математическим ожиданием (средним значением по распределению) называется действительное число, определяемое в зависимости от типа СВ Х формулой:


Математическое ожидание существует, если ряд (соответственно интеграл) в правой части формулы сходится абсолютно. Если mX = 0, то СВ Х называется центрированной (обозначается ).

Свойства математического ожидания:

где С - константа;

M = C×M[X];

M = M[X]+M[Y],

для любых СВ X и Y;

M = M[X]×M[Y] + KXY,

где KXY = M - ковариация СВ X и Y.

Начальным моментом k-го порядка (k = 0, 1, 2, ...) распределения СВ Х называется действительное число, определяемое по формуле:

nk = M =

Центральным моментом k-го порядка распределения СВ Х называется число, определяемое по формуле:

mk = M[(X-mX)k]=

Из определений моментов, в частности, следует, что: n0 = m0 = 1, n1 = mX, m2 = DX = sX2.

Модой СВНТ называется действительное число Mo(X) = x*, определяемое как точка максимума ПР f(x). Мода может иметь единственное значение (унимодальное распределение) или иметь множество значений (мультимодальное распределение).

Медианой СВНТ называется действительное число Mе(X) = x0, удовлетворяющее условию: P{X < x0} = P{X ³ x0} или F(x0) = 0,5.

Квантилем уровня р называется действительное число tp, удовлетворяющее уравнению: F(tp) = p. В частности, из определения медианы следует, что x0 = t0,5.

Дисперсией СВ Х называется неотрицательное число D[X] = DХ, определяемое формулой:

DX = M[(X-mX)2] = M - mX2 =

Дисперсия существует, если ряд (соответственно интеграл) в правой части равенства сходится. Свойства дисперсии:

D[C] = 0, где С - константа;

D = C2×D[X];

дисперсия, очевидно, не меняется от смещения СВ X;

D = D[X] + D[Y] + 2×KXY,

где KXY = M - ковариация СВ X и Y;

Неотрицательное число sХ = называется среднеквадратичным отклонением СВ X. Оно имеет размерность СВ Х и определяет некоторый стандартный среднеквадратичный интервал рассеивания, симметричный относительно математического ожидания. (Величину sХ иногда называют стандартным отклонением). СВ Х называется стандартизованной, если mX = 0 и sХ = 1. Если величина Х = const (т.е. Х не случайна), то D[X] = 0.

Показателем асимметрии ПР является коэффициент асимметрии (“скошенности”) распределения: A = m3/s3X. Показателем эксцесса ПР является коэффициент эксцесса (“островершинности”) распределения: E = (m4/s4X)-3. В частности, для нормального распределения E = 0.

Упорядочная совокупность n случайных величин (СВ) Х1, Х2, ..., Хn, рассматриваемых совместно в данном опыте, называется n-мерной СВ или случайным вектором и обозначается = (Х1, Х2, ..., Хn).

Функцией распределения (ФР) n-мерного случайного вектора называется функция n действительных переменных х1, x2, ..., xn, определяемая как вероятность совместного выполнения n неравенств: F(x1, x2, ... xn) = P{ X1 < x1, X2 < x2,..., Xn < xn}. В частности, для двумерного случайного вектора (X, Y) по определению ФР имеем: F(x, y) = P{X < x, Y < y}. ФР F (х, у) обладает следующими свойствами:

1 0 £ F(x, у) £ 1;

2 F(x, у) - неубывающая функция своих аргументов;

4.

Свойство 4 обычно называют условием согласованности. Оно означает, что ФР отдельных компонент случайного вектора могут быть найдены предельным переходом из функции совместного распределения этих компонент. Вероятность попадания случайной точки на плоскости (X, Y) в прямоугольник со сторонами, параллельными осям координат, может быть вычислена с помощью ФР по формуле:

P{x1 £ X < x2, y1 £ Y < y2} = F(x1, y1)+ F(x2, y2)- F(x1, y2)- F(x2, y1).

Двумерный случайный вектор (X,Y) называется случайным вектором дискретного типа (СВДТ), если множество его возможных значений G(x, y) не более чем счетно. Ее закон распределения можно задать двумерной таблицей из перечня возможных значений пар компонент {(хi, yi) | (хi, yi) Î G(x, y)} и соответствующих каждой такой паре вероятностей pij = P{X = xi, Y = yj}, удовлетворяющих условию

Двумерный случайный вектор (X, Y) называется случайным вектором непрерывного типа (СВНТ), если существует такая неотрицательная функция f(x, y) называемая плотностью распределения (ПР) вероятностей случайного вектора, что:

f(x, y) = , тогда F(x, y) = .

ПР вероятностей обладает следующими свойствами:

f(x, y) ³ 0, (x, y) Î R2;

- условие нормировки.

ПР вероятностей отдельных компонент случайного вектора выражаются в виде интегралов от совместной плотности:

f(x) = f(y) = .

Вероятность попадания случайной точки в произвольную квадрируемую область S на плоскости определяется по формуле

P{(X, Y) Î S}= .

Условной плотностью распределения вероятностей случайной компоненты X при условии, что компонента Y приняла определенное значение у, называется функция f(x/y) действительной переменной х Î R: f(x/y) = f(x, y)/f(y). Аналогично определяется условная плотностью распределения вероятностей случайной компоненты Y при условии, что компонента X приняла определенное значение x: f(y/x) = f(x, y)/f(x). СВ X1, X2, ..., Хn называются независимыми (в совокупности), если для событий {Xi Î Bi}, i = 1, 2, ..., n, где B1, B2, ... Bn - подмножества числовой прямой, выполняется равенство: P{X1 Î B1, X2 Î B2, ... Xn Î Bn} = P{X1 Î B1}× P{X2 Î B2}× ... ×P{Xn Î Bn}.

Теорема: СВ X1, Х2, .... Хn независимы тогда и только тогда, когда в любой точке x = (x1, x2, ..., xn) имеет место равенство: F(x1, x2, ..., xn) = F(x1) × F (x2) × ... × F (xn) (или f(x1, x2, ..., xn) = f(x1) × f(x2) × ... × f(xn)).

Для двумерного случайного вектора (X, Y) вводятся следующие числовые характеристики.

Начальным моментом порядка r + s случайного вектора (X, Y) называется действительное число nr,s, определяемое формулой:

nr,s = M =

Начальный момент nr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. В частности, nr,0 = M - соответствующие начальные моменты компоненты X. Вектор с неслучайными координатами (mX, mY) = (n1,0, n0,1) называется математическим ожиданием случайного вектора (X, Y) или центром рассеивания.

Центральным моментом порядка r + s случайного вектора (X, Y) называется действительное число mr,s определяемое формулой

mr,s = M[(X-mX)r (Y-mY)s] =

Центральный момент mr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. Вектор с неслучайными координатами (DX, DY) = (m2,0, m0,2) называется дисперсией случайного вектора.

Центральный момент m1,1 называется корреляционным моментом (ковариацией): KXY = M = M[(X-mX)×(Y-mY)] = M-mX mY.

Коэффициентом корреляции двух случайных компонентов X и Y случайного вектора является нормированная ковариация

rXY = KXY/(sXsY).

Свойства ковариации (и коэффициента корреляции).

Понятие случайной величины. Дискретные и непрерывные случайные величины. Функция распределения вероятностей и ее свойства. Плотность распределения вероятности и ее свойства. Числовые характеристики случайных величин: математическое ожидание, дисперсия и их свойства, среднее квадратическое отклонение, мода и медиана; начальные и центральные моменты, асимметрия и эксцесс. Числовые характеристики среднего арифметического n независимых случайных величин.

Понятие случайной величины

Случайной называется величина, которая в результате испытаний принимает то или иное (но при этом только одно) возможное значение, заранее неизвестное, меняющееся от испытания к испытанию и зависящее от случайных обстоятельств. В отличие от случайного события, являющегося качественной характеристикой случайного результата испытания, случайная величина характеризует результат испытания количественно. Примерами случайной величины могут служить размер обрабатываемой детали, погрешность результата измерения какого-либо параметра изделия или среды. Среди случайных величин, с которыми приходится встречаться на практике, можно выделить два основных типа: дискретные и непрерывные.

Дискретной называется случайная величина, принимающая конечное или бесконечное счетное множество значений. Например: частота попаданий при трех выстрелах; число бракованных изделий в партии из n штук; число вызовов, поступающих на телефонную станцию в течение суток; число отказов элементов прибора за определенный промежуток времени при испытании его на надежность; число выстрелов до первого попадания в цель и т. д.

Непрерывной называется случайная величина, которая может принимать любые значения из некоторого конечного или бесконечного интервала. Очевидно, что число возможных значений непрерывной случайной величины бесконечно. Например: ошибка при измерении дальности радиолокатора; время безотказной работы микросхемы; погрешность изготовления деталей; концентрация соли в морской воде и т. д.

Случайные величины обычно обозначают буквами X,Y и т. д., а их возможные значения - x,y и т. д. Для задания случайной величины недостаточно перечислить все ее возможные значения. Необходимо также знать, как часто могут появиться те или иные ее значения в результате испытаний при одних и тех же условиях, т. е. нужно задать вероятности их появления. Совокупность всех возможных значений случайной величины и соответствующих им вероятностей составляет распределение случайной величины.

Законы распределения случайной величины

Законом распределения случайной величины называется соответствие между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину говорят, что она подчиняется данному закону распределения. Две случайные величины называются независимыми , если закон распределения одной из них не зависит то того, какие возможные значения приняла другая величина. В противном случае случайные величины называются зависимыми . Несколько случайных величин называются взаимно независимыми , если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Закон распределения случайной величины может быть задан в виде таблицы, функции распределения либо плотности распределения. Таблица, содержащая возможные значения случайной величины и соответствующие вероятности, является простейшей формой задания закона распределения случайной величины.

\begin{array}{|c|c|c|c|c|c|c|}\hline{X}&x_1&x_2&x_3&\cdots&x_{n-1}&x_n\\\hline{P}&p_1&p_2&p_3&\cdots&p_{n-1}&p_n\\\hline\end{array}

Табличное задание закона распределения можно использовать только для дискретной случайной величины с конечным числом возможных значений. Табличная форма задания закона случайной величины называется также рядом распределения.

Для наглядности ряд распределения представляют графически. При графическом изображении в прямоугольной системе координат по оси абсцисс откладывают все возможные значения случайной величины, а по оси ординат - соответствующие вероятности. Точки (x_i,p_i) , соединенные прямолинейными отрезками, называют многоугольником распределения (рис. 5). Следует помнить, что соединение точек (x_i,p_i) выполняется только с целью наглядности, так как в промежутках между x_1 и x_2 , x_2 и x_3 и т. д. не существует значений, которые может принимать случайная величина X , поэтому вероятности её появления в этих промежутках равны нулю.

Многоугольник распределения, как и ряд распределения, является одной из форм задания закона распределения дискретной случайной величины. Они могут иметь различную форму, однако все обладают одним общим свойством: сумма ординат вершин многоугольника распределения, представляющая собой сумму вероятностей всех возможных значений случайной величины, всегда равна единице. Это свойство следует из того, что все возможные значения случайной величины X образуют полную группу несовместных событий, сумма вероятностей которых равна единице.

Функция распределения вероятностей и ее свойства

Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают F(x) . Функция распределения определяет вероятность того, что случайная величина X принимает значения, меньшие фиксированного действительного числа x , т. е. F(x)=P\{Xинтегральной функцией распределения.

Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку X оси Ox (рис. 6), которая в результате испытания может занять то или иное положение на оси, то функция распределения F(x) - это вероятность того, что случайная точка X в результате испытания попадет левее точки x .

Для дискретной случайной величины X , которая может принимать значения , функция распределения имеет вид

F(x)=\sum\limits_{x_i
где неравенство x_i

Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

Рассмотрим общие свойства функций распределения.

Свойство 1. Функция распределения - неотрицательная, функция, заключенная между нулем и единицей:

0\leqslant{F(x)}\leqslant1

Справедливость этого свойства вытекает из того, что функция распределения F(x) определена как вероятность случайного события, состоящего в том, что X

Свойство 2. Вероятность попадания случайной величины в интервал [\alpha;\beta) равна разности значений функции распределения на концах этого интервала, т. е.

P\{\alpha\leqslant{X}<\beta\}=F(\beta)-F(\alpha)

Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. F(\beta)\geqslant{F(\alpha)} .

Свойство 4. На минус бесконечности функция распределения равна нулю, а на плюс бесконечности - единице, т. е. \lim_{x\to-\infty}F(x)=0 и \lim_{x\to+\infty}F(x)=1 .

Пример 1. Функция распределения непрерывной случайной величины задана выражением

F(x)=\begin{cases}0,&x\leqslant1\\a(x-1)^2,&10\end{cases}.

Найти коэффициент a и построить график F(x) . Определить вероятность того, что случайная величина X в результате опыта примет значение на интервале .

Решение. Так как функция распределения непрерывной случайной величины X непрерывна, то при x=3 получим a(3-1)^2=1 . Отсюда a=\frac{1}{4} . График функции F(x) изображен на рис. 9.

Исходя из второго свойства функции распределения, имеем

P\{1\leqslant{X}<2\}=F(2)-F(1)=\frac{1}{4}.

Плотность распределения вероятности и ее свойства

Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности, или дифференциальной функцией распределения случайной величины.

Плотность распределения f(x) равна производной от функции распределения F(x) , т. е.

F(x)=F"(x).

Смысл плотности распределения f(x) состоит в том, что она указывает на то, как часто случайная величина X появляется в некоторой окрестности точки x при повторении опытов. Кривая, изображающая плотность распределения f(x) случайной величины, называется кривой распределения.

Рассмотрим свойства плотности распределения.

Свойство 1. Плотность распределения неотрицательна, т. е.

F(x)\geqslant0.

Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от -\infty до x , т. е.

F(x)=\int\limits_{-\infty}^{x}f(x)\,dx.

Свойство 3. Вероятность попадания непрерывной случайной величины X на участок (\alpha;\beta) равна интегралу от плотности распределения, взятому по этому участку, т. е.

P\{\alpha\leqslant{X}\leqslant\beta\}=\int\limits_{\alpha}^{\beta}f(x)\,dx.

Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

\int\limits_{-\infty}^{+\infty}f(x)\,dx=1.

Пример 2. Случайная величина X подчинена закону распределения с плотностью

F(x)=\begin{cases}0,&x<0\\a\sin{x},&0\pi\end{cases}

Определить коэффициент а; построить график плотности распределения; найти вероятность попадания случайной величины на участок от 0 до \frac{\pi}{2} определить функцию распределения и построить ее график.

\int\limits_{-\infty}^{+\infty}f(x)\,dx=a\int\limits_{0}^{\pi}\sin{x}\,dx=\Bigl.{-a\cos{x}}\Bigl|_{0}^{\pi}=2a.

Учитывая свойство 4 плотности распределения, находим a=\frac{1}{2} . Следовательно, плотность распределения можно выразить так:

F(x)=\begin{cases}0,&x<0\\\dfrac{1}{2}\sin{x},&0\pi\end{cases}.

График плотности распределения на рис. 10. По свойству 3, имеем

P\!\left\{0

Для определения функции распределения воспользуемся свойством 2:

F(x)=\frac{1}{2}\int\limits_{0}^{x}\sin{x}\,dx=\Bigl.{\-\frac{1}{2}\cos{x}}\Bigl|_{0}^{x}=\frac{1}{2}-\frac{1}{2}\cos{x}.

Таким образом, имеем

F(x)=\begin{cases}0,&x<0\\\dfrac{1}{2}-\dfrac{1}{2}\cos{x},&0\pi\end{cases}.

График функции распределения изображен на рис. 11

Числовые характеристики случайных величин

Закон распределения полностью характеризует случайную величину с вероятностной точки зрения. Но при решении ряда практических задач нет необходимости знать все возможные значения случайной величины и соответствующие им вероятности, а удобнее пользоваться некоторыми количественными показателями. Такие показатели называются числовыми характеристиками случайной величины. Основными из них являются математическое ожидание, дисперсия, моменты различных порядков, мода и медиана.

Математическое ожидание иногда называют средним значением случайной величины. Рассмотрим дискретную случайную величину X , принимающую значения x_1,x_2,\ldots,x_n с вероятностями соответственно p_1,p_2,\ldots,p_n Определим среднюю арифметическую значений случайной величины, взвешенных по вероятностям их появлений. Таким образом, вычислим среднее значение случайной величины, или ее математическое ожидание M(X) :

M(X)=\frac{x_1p_1+x_2p_2+\cdots+x_np_n}{p_1+p_2+\cdots+p_n}=\frac{\sum\limits_{i=1}^{n}x_ip_i}{\sum\limits_{i=1}^{n}p_i}.

Учитывая, что \sum\limits_{i=1}^{n}p_i=1 получаем

M(X)=\sum\limits_{i=1}^{n}x_ip_i}.~~~~~~~(4.1)

Итак, математическим ожиданием дискретной случайной величины называется сумма произведений всех ее возможных значений на соответствующие вероятности.

Для непрерывной случайной величины математическое ожидание

M(X)=\int\limits_{-\infty}^{\infty}xf(x)\,dx.

Математическое ожидание непрерывной случайной величины X , возможные значения которой принадлежат отрезку ,

M(X)=\int\limits_{a}^{b}xf(x)\,dx.~~~~~~~(4.2)

Используя функцию распределения вероятностей F(x) , математическое ожидание случайной величины можно выразить так:

M(X)=\int\limits_{-\infty}^{\infty}x\,d(F(x)).

Свойства математического ожидания

Свойство 1. Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий:

M(X+Y)=M(X)+M(Y).

Свойство 2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY)=M(X)M(Y).

Свойство 3. Математическое ожидание постоянной величины равно самой постоянной:

M(c)=c.

Свойство 4. Постоянный множитель случайной величины можно вынести за знак математического ожидания:

M(cX)=cM(X).

Свойство 5. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю:

M(X-M(X))=0.

Пример 3. Найти математическое ожидание количества бракованных изделий в выборке из пяти изделий, если случайная величина X (количество бракованных изделий) задана рядом распределения.

\begin{array}{|c|c|c|c|c|c|c|}\hline{X}&0&1&2&3&4&5\\\hline{P}&0,\!2373&0,\!3955&0,\!2637&0,\!0879&0,\!0146&0,\!0010\\\hline\end{array}

Решение. По формуле (4.1) находим

M(X)=0\cdot0,\!2373+1\cdot0,\!3955+2\cdot0,\!2637+3\cdot0,\!0879+4\cdot0,\!0146+5\cdot0,\!0010 =1,\!25.

Модой M_0 дискретной случайной величины называется наиболее вероятное ее значение.

Модой M_0 непрерывной случайной величины называется такое ее значение, которому соответствует наибольшее значение плотности распределения. Геометрически моду интерпретируют как абсциссу точки глобального максимума кривой распределения (рис. 12).

Медианой M_e случайной величины называется такое ее значение, для которого справедливо равенство

P\{XM_e\}.

С геометрической точки зрения медиана - это абсцисса точки, в которой площадь фигуры, ограниченной кривой распределения вероятностей и осью абсцисс, делится пополам (рис. 12). Так как вся площадь, ограниченная кривой распределения и осью абсцисс, равна единице, то функция распределения в точке, соответствующей медиане, равна 0,5, т. е.

F(M_e)=P\{X

С помощью дисперсии и среднеквадратического отклонения можно судить о рассеивании случайной величины вокруг математического ожидания. В качестве меры рассеивания случайной величины используют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, которое называют дисперсией случайной величины X и обозначают D[X] :

D[X]=M((X-M(X))^2).

Для дискретной случайной величины дисперсия равна сумме произведений квадратов отклонений значений случайной величины от ее математического ожидания на соответствующие вероятности:

D[X]=\sum\limits_{i=1}^{n}(x_i-M(X))^2p_i.

Для непрерывной случайной величины, закон распределения которой задан плотностью распределения вероятности f(x) , дисперсия

D[X]=\int\limits_{-\infty}^{+\infty}(x-M(X))^2f(x)\,dx.

Размерность дисперсии равна квадрату размерности случайной величины и поэтому ее нельзя интерпретировать геометрически. Этих недостатков лишено среднее квадратическое отклонение случайной величины, которое вычисляется по формуле

\sigma=\sqrt{D[X]}.

Свойства дисперсии случайных величин

Свойство 1. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D=D[X]+D[Y].

Свойство 2. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины X и квадратом ее математического ожидания:

D[X]=M(X^2)-(M(X))^2.~~~~~~~(4.3).

Свойство 3. Дисперсия постоянной величины равна нулю:

D[c]=0.

Свойство 4. Постоянный множитель случайной величины, можно выносить за знак дисперсии, предварительно возведя его в квадрат:

D=c^2D[X].

Свойство 5. Дисперсия произведения двух независимых случайных величин X и Y определяется по формуле

D=D[X]D[Y]+(M(X))^2D[Y]+(M(X))^2D[X].

Пример 4. Вычислить дисперсию количества бракованных изделий для распределения примера 3.

Решение. По определению дисперсии

Обобщением основных числовых характеристик случайной величины является понятие моментов случайной величины.

Начальным моментом q-го порядка случайной величины называют математическое ожидание величины X^q :

Начальный момент первого порядка представляет собой математическое ожидание, а центральный момент второго порядка - дисперсию случайной величины.

Нормированный центральный момент третьего порядка служит характеристикой скошенности или асимметрии распределения (коэффициент асимметрии ):

A_s=\frac{\mu_{{}_3}}{\sigma^3}.

Нормированный центральный момент четвертого порядка служит характеристикой островершинности или плосковершинности распределения (эксцесс ):

E=\frac{\mu_{{}_4}}{\sigma^4}-3.

Пример 5. Случайная величина X задана плотностью распределения вероятностей

F(x)=\begin{cases}0,&x<0;\\ax^2,&02.\end{cases}.

Найти коэффициент a , математическое ожидание, дисперсию, асимметрию и эксцесс.

Решение. Площадь, ограниченная кривой распределения, численно равна

\int\limits_{0}^{2}f(x)\,dx=a\int\limits_{0}^{2}x^2\,dx=\left.{a\,\frac{x^3}{3}}\right|_{0}^{2}=\frac{8}{3}\,a.

Учитывая, что эта площадь должна быть равна единице, находим a=\frac{3}{8} . По формуле (4.2) найдем математическое ожидание:

M(X)=\int\limits_{0}^{2}xf(x)\,dx=\frac{3}{8}\int\limits_{0}^{2}x^3\,dx=\left.{\frac{3}{8}\cdot\frac{x^4}{4}}\right|_{0}^{2}=1,\!5.

Дисперсию определим по формуле (4.3). Для этого найдем сначала математическое ожидание квадрата случайной величины:

M(X^2)=\int\limits_{0}^{2}x^2f(x)\,dx=\frac{3}{8}\int\limits_{0}^{2}x^4\,dx=\left.{\frac{3}{8}\cdot\frac{x^5}{5}}\right|_{0}^{2}=2,\!4.

Таким образом,

\begin{aligned}D(X)&=M(X^2)-(M(X))^2=2,\!4-(1,\!5)^2=0,\!15;\\ \sigma(X)&=\sqrt{D(X)}=\sqrt{0,\!15}\approx0,\!3873.\end{aligned}

Используя начальные моменты, вычисляем центральные моменты третьего и четвертого порядка:

\begin{aligned}\nu_1&=M(X)=1,\!5;\quad\nu_2=M(X^2)=2,\!4.\\ \nu_3&=M(X^3)=\int\limits_0^2{x^3f(x)\,dx}=\frac{3}{8}\int\limits_0^2{x^5\,dx}=\left.{\frac{3}{8}\cdot\frac{x^6}{6}}\right|_0^2=4;\\ \nu_4&=M(X^4)=\int\limits_0^2{x^4f(x)\,dx}=\frac{3}{8}\int\limits_0^2{x^6\,dx}=\left.{\frac{3}{8}\cdot\frac{x^7}{7}}\right|_0^2\approx6,\!8571;\\ \mu_3&=\nu_3-3\nu_1\nu_2+2\nu_1^3=4-3\cdot1,\!5\cdot2,\!4+2\cdot(1,\!5)^3=-0,\!05.\\ \mu_4&=\nu_4-4\nu_1\nu_3+6\nu_1^2\nu_2-3\nu_1^4=\\&=6,\!8571-4\cdot1,\!5\cdot4+6\cdot(1,\!5)^2\cdot2,\!4-3\cdot(1,\!5)^4=0,\!0696.\\ A_s&=\frac{\mu_3}{\sigma^3}=-\frac{0,\!05}{(0,\!3873)^3}=-0,\!86.\\ E&=\frac{\mu_4}{\sigma^4}-3=\frac{0,\!0696}{(0,\!3873)^4}-3=-0,\!093.\end{aligned}

Числовые характеристики среднего арифметического n независимых случайных величин

Пусть x_1,x_2,\ldots,x_n - значения случайной величины X , полученные при n независимых испытаниях. Математическое ожидание случайной величины равно M(X) , а ее дисперсия D[X] . Эти значения можно рассматривать как независимые случайные величины X_1,X_2,\ldots,X_n с одинаковыми математическими ожиданиями и дисперсиями:

M(X_i)=M(X); \quad D=D[X],~~i=1,2,\ldots,n.

Средняя арифметическая этих случайных величин

\overline{X}=\sum\limits_{i=1}^{n}\frac{X_i}{n}.

Используя свойства математического ожидания и дисперсии случайной величины, можно записать:

\begin{aligned}M(\overline{X})&=M\!\left(\frac{1}{n}\sum\limits_{i=1}^{n}X_i\right)=\frac{1}{n}\sum\limits_{i=1}^{n}M(X_i)=M(X).~~~~~~~(4.4)\\ D[\overline{X}]&=D\!\left[\frac{1}{n}\sum\limits_{i=1}^{n}X_i\right]=\frac{1}{n^2}\sum\limits_{i=1}^{n}D=\frac{D[X]}{n}.~~~~~~~(4.5)\end{aligned}


Перейти к следующему разделу
Многомерные случайные величины
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!