Вычислить определенный интеграл по формуле симпсона. Старт в науке

Если вы искали на данной страничке только метод Симпсона, то настоятельно рекомендую сначала прочитать начало урока и просмотреть хотя бы первый пример. По той причине, что многие идеи и технические приемы будут схожими с методом трапеций.

И снова, начнём с общей формулы
Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на чётное количество равных отрезков. Чётное количество отрезков обозначают через .

На практике отрезков может быть:
два :
четыре :
восемь :
десять :
двадцать :
Другие варианты не припоминаю.

Внимание! Число понимается как ЕДИНОЕ ЧИСЛО. То есть, НЕЛЬЗЯ сокращать, например, на два, получая . Запись лишь обозначает , что количество отрезков чётно . И ни о каких сокращениях речи не идёт

Итак, наше разбиение имеет следующий вид:

Термины аналогичны терминам метода трапеций:
Точки называют узлами .

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:
где:
– длина каждого из маленьких отрезков или шаг ;
– значения подынтегральной функции в точках .

Детализируя это нагромождение, разберу формулу подробнее:
– сумма первого и последнего значения подынтегральной функции;
– сумма членов с чётными индексами умножается на 2;
– сумма членов с нечётными индексами умножается на 4.

Пример 4

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Интеграл, кстати, опять неберущийся.

Решение: Сразу обращаю внимание на тип задания – необходимо вычислить определенный интеграл с определенной точностью . Что это значит, уже комментировалось в начале статьи, а также на конкретных примерах предыдущего параграфа. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков (значение «эн») чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. Кто понял, о чём я, и оценил объем работы, тот улыбнулся. Однако здесь не до смеха, находить четвертую производную от такой подынтегральной функции будет уже не мегаботан, а клинический психопат. Поэтому на практике практически всегда используется упрощенный метод оценки погрешности.

Начинаем решать. Если у нас два отрезка разбиения , то узлов будет на один больше : . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Еще раз комментирую, как заполняется таблица:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .

В третью строку заносим значения подынтегральной функции. Например, если , то . Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Таким образом:

Оцениваем погрешность:

Погрешность больше требуемой точности: , поэтому необходимо еще раз удвоить количество отрезков: .

Формула Симпсона растёт, как на дрожжах:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:

Заметьте, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка, и если сразу бУхнуть:
, то выглядеть сиё бухло будет как халтура. А при более детальной записи у преподавателя сложится благостное впечатление, что вы добросовестно стирали клавиши микрокалькулятора в течение доброго часа. Детальные вычисления для «тяжелых» случаев присутствуют в моём калькуляторе.

Оцениваем погрешность:

Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:

Ответ: с точностью до 0,001

Пример 5

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,0001. Разбиение начать с двух отрезков

Это пример для самостоятельного решения. Примерный образец чистового «короткого» оформления решения и ответ в конце урока.

В заключительной части урока рассмотрим еще пару распространенных примеров

Пример 6

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Точность вычислений 0,001.

Этот интеграл берётся, правда, новичку взломать его не так-то просто, соответствующий метод решения рассмотрен в примере 5 урока Сложные интегралы . В задачах на приближенное вычисление интеграл не обязан быть непременно неберущимся! Любознательные студенты могут вычислить его точно и оценить погрешность относительно приближенного значения.

Решение: Обратите внимание на формулировку задания: «Точность вычислений 0,001». Смысловой нюанс данной формулировки предполагает, что результаты нужно только округлить до третьего знака после запятой, а не достигнуть такой точности. Таким образом, когда вам предлагается для решения задача на метод трапеций, метод Симпсона, всегдавнимательно вникайте в условие ! Спешка, как известно, нужна при охоте на блох.

Используем формулу Симпсона:

При десяти отрезках разбиения шаг составляет

Заполним расчетную таблицу:

Таблицу рациональнее сделать двухэтажной, чтобы не пришлось «мельчить» и всё разборчиво вместилось на тетрадный лист.

Вычисления, не ленимся, расписываем подробнее:

Ответ:

И еще раз подчеркну, что о точности здесь речи не идет. На самом деле, ответ может быть не , а, условно говоря, . В этой связи в ответе не нужно машинально приписывать «дежурную» концовку: «с точностью до 0,001»

Пример 7

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Все вычисления проводить с точностью до третьего десятичного знака.

Примерная версия чистового оформления и ответ в конце урока, который подошел к концу.

Для приближенного вычисления определенного интеграл применяются и другие методы. В частности, теория степенных рядов со стандартной задачей Приближенное вычисление определенного интеграла путём разложения подынтегральной функции в ряд . Но это уже материал второго курса.

А сейчас настала пора раскрыть страшную тайну интегрального исчисления. Я создал уже больше десятка уроков по интегралам, и это, так скажем, теория и классика темы. На практике же, в частности, при инженерных расчетах – приблизить объекты реального мира стандартными математическими функциями практически невозможно. Невозможно идеально точно рассчитать, площадь, объем, плотность, к примеру, асфальтового покрытия.Погрешность , пусть с десятого, пусть с сотого знака после запятой – но она всё равно будет . Именно поэтому по приближенным методам вычисления написаны сотни увесистых кирпичей и создано серьёзное программное обеспечение для приближенных вычислений. Классическая же теория интегрального исчисления в действительности применяется заметно реже. Но, кстати, без неё – тоже никуда!

Данный урок не рекорден по объему, но на его создание у меня ушло необычно много времени. Я правил материал и переделывал структуру статьи несколько раз, поскольку постоянно прорисовывались новые нюансы и тонкости. Надеюсь, труды были не напрасны, и получилось вполне логично и доступно.

Всего вам доброго!

Решения и ответы:

Пример 3: Решение: Разбиваем отрезок интегрирования на 4 части:
Тогда формула трапеций принимает следующий вид:

Вычислим шаг:
Заполним расчетную таблицу:

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4

n - количество разбиений

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке. Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках:

Проинтегрируем на отрезке.:

Введем замену переменных:

Учитывая формулы замены,


Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью, прямыми, и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х 1 , х 3 , ..., х 2n-1 имеет коэффициент 4, в четных точках х 2 , х 4 , ..., х 2n-2 - коэффициент 2 и в двух граничных точках х 0 =а, х n =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке . Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения, а также полуцелых точках.

По формуле средних прямоугольников получим I прям =0.785606 (погрешность равна 0.027%), по формуле трапеций I трап =0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок на четыре равные части точками х 0 =0, х 1 =1/4, х 2 =1/2, х 3 =3/4, х 4 =1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0 =1,0000, у 1 =0,8000, у 2 =0,6667, у 3 =0,5714, у 4 =0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 4 4)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

В этом методе предлагается подынтегральную функцию на частичном отрезке аппроксимировать параболой, проходящей через точки
(x j , f (x j )), где j = i -1; i -0.5; i , то есть подынтегральную функцию аппроксимируем интерполяционным многочленом Лагранжа второй степени:

(10.14)

Проведя интегрирование, получим:

(10.15)

Это и есть формула Симпсона или формула парабол. На отрезке
[a, b ] формула Симпсона примет вид

(10.16)

Графическое представление метода Симпсона показано на рис. 2.4.

Рис. 10.4. Метод Симпсона

Избавимся в выражении (2.16) от дробных индексов, переобозначив переменные:

(10.17)

Тогда формула Симпсона примет вид

(10.18)

Погрешность формулы (2.18) оценивается следующим выражением:

, (10.19)

где h·n = b - a , . Таким образом, погрешность формулы Симпсона пропорциональна O (h 4 ).

Замечание. Следует отметить, что в формуле Симпсона отрезок интегрирования обязательно разбивается на четное число интервалов.

10.5. Вычисление определенных интегралов методами
Монте–Карло

Рассматриваемые ранее методы называются детерминированными , то есть лишенными элемента случайности.

Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла

(10.20)

При вычислении этого интеграла по формуле прямоугольников интервал [a, b ] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:

(10.21)

(10.22)

Здесь γ i - случайное число, равномерно распределенное на интервале
. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.

На рис. 2.5 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2.21) и (2.22).


(2.23)

Рис. 10.6. Интегрирование методом Монте-Карло (2-й случай)

Как видно на рис. 2.6, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале , то полученные значения (γ 1, γ 2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N – общее число пар чисел.

Пример 2.1. Вычислить следующий интеграл:

Поставленная задача была решена различными методами. Полученные результаты сведены в табл. 2.1.

Таблица 2.1

Замечание. Выбор табличного интеграла позволил нам сравнить погрешность каждого метода и выяснить влияние числа разбиений на точность вычислений.

11 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ
И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

Возникает задача о численном вычислении определенного интеграла, решаемая с помощью формул, носящих название квад­ратурных.

Напомним простейшие формулы численного интегрирования.

Вычислим приближенное численное значение . Интервал интегрирования [а, b] разобьем на п равных частей точками деле­ния
, называемыми узлами квадра­турной формулы. Пусть в узлах известны значения
:


Величина

называется интервалом интегрирования или шагом. Отметим, что в практике -вычислений число я выбирают небольшим, обычно оно не больше 10-20.На частичном интервале

подынтегральную функцию заменяют интерполяционным много­членом


который на рассматриваемом интервале приближенно представ­ляет функцию f (х).

а) Удержим в интерполяционном многочлене только один первый член, тогда


Полученная квадратная формула

называется формулой прямоугольников.

б) Удержим в интерполяционном многочлене два первых члена, тогда

(2)

Формула (2) называется формулой трапеций.

в) Интервал интегрирования
разобьем на четное число 2n равных частей, при этом шаг интегрирования h будет равен. На интервале
длиной 2h подынтегральную функцию заменим интерполяционным многочленом второй сте­пени, т. е. удержим в многочлене три первых члена:

Полученная квадратурная формула называется формулой Симп­сона

(3)

Формулы (1), (2) и (3) имеют простой геометрический смысл. В формуле прямоугольников подынтегральная функция f(х) на интервале
заменяется отрезком прямой у = ук, параллельной оси абсцисс, а в формуле трапеций - отрезком прямой
и вычисляется соответственно площадь прямо­угольника и прямолинейной трапеции, которые затем сумми­руются. В формуле Симпсона функция f(х) на интервале
длиной 2h заменяется квадратным трехчленом - параболой
вычисляется площадь криволинейной параболической трапеции, затем площади суммируются.

ЗАКЛЮЧЕНИЕ

В завершении работы, хочется отметить ряд особенностей применения рассмотренных выше методов. Каждый способ приближённого решения определённого интеграла имеет свои преимущества и недостатки, в зависимости от поставленной задачи следует использовать конкретные методы.

Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким-либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл.

По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения.

Таким образом, интегрирование всякой рациональной дроби сводится к интегрированию многочлена и нескольких простейших дробей.

Интеграл от любой рациональной функции может быть выражен через элементарные функции в конечном виде, а именно:

    через логарифмы- в случаях простейших дробей 1 типа;

    через рациональные функции- в случае простейших дробей 2 типа

    через логарифмы и арктангенсы- в случае простейших дробей 3 типа

    через рациональные функции и арктангенсы- в случае простейших дробей 4 типа. Универсальная тригонометрическая подстановка всегда рационализирует подынтегральную функцию, однако часто она приводит к очень громоздким рациональным дробям, у которых, в частности, практически невозможно найти корни знаменателя. Поэтому при возможности применяются частные подстановки, которые тоже рационализируют подынтегральную функцию и приводят к менее сложным дробям.

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

Как следует из теоремы, условие непрерывности функции яв­ляется достаточным условием интегрируемости функции. Но это не означает, что определенный интеграл существует только для непрерывных функций. Класс интегрируемых функций гораздо шире. Так, например, существует определенный интеграл от функ­ций, имеющих конечное число точек разрыва.

Вычис­ление определенного интеграла от непрерывной функции с по­мощью формулы Ньютона-Лейбница сводится к нахождению первообразной, которая всегда существует, но не всегда явля­ется элементарной функцией или функцией, для которой состав­лены таблицы, дающие возможность получить значение интеграла. В многочисленных приложениях интегрируемая функция зада­ется таблично и формула Ньютона - Лейбница непосредственно неприменима.

Если необходимо получить наиболее точный результат, идеально подходит метод Симпсона .

Из выше изученного можно сделать следующий вывод, что интеграл используется в таких науках как физика, геометрия, математика и других науках. При помощи интеграла вычисляют работу силы, находят координаты центр масс, путь пройденный материальной точкой. В геометрии используется для вычисления объема тела, нахождение длины дуги кривой и др.