RGB светильник или лампа настроения на ATtiny13. LED RGB подсветка - особенности, виды и характеристики Принцип работы rgb

На носу Новый год, праздничное настроение, разноцветные огни... И конечно нужно задуматься о новогодних подарках для своих близких. Вы уже придумали что подарить? Я долго размышлял над этим и решил что лучший подарок, это подарок сделанный своими руками. В результате чего была затеяна данная конструкция RGB светильника. Её можно использовать везде и как угодно, она интуитивно понятна и проста, а значит понравится любому человеку. Функция светильника очень проста: освещать окружающий интерьер различными меняющимися цветами. Для этой нехитрой задачи пойдёт практически любой микроконтроллер, но я остановился на AVR микроконтроллере Attiny13, так как он достаточно распространён, дешёв и у меня его много. В качестве светодиода я использовал матовый RGB светодиод с четырьмя выводами, с общим катодом.

На схеме указано подключение RGB светодиода с общим анодом.

Но во время разработки я наткнулся на одну неприятность, у микроконтроллера Attiny13 всего лишь два аппаратных ШИМ выхода на таймере 0 и на этом всё. Ох, а нужно ведь три ШИМа, на три цвета... И засада, таймер в МК один... Поэтому я решил поизвращаться и реализовал три программных ШИМа на таймере 0, получилось очень даже хорошо, но, данный метод плох тем что частота этого ШИМа получается низка. И чтобы не было видно мерцаний светодиода пришлось запускать микроконтроллер на частоте 9,6 МГц. Прошивку я писал в среде BASCOM-AVR. Главное что всё работает!

Питание RGB светильника осуществляется от двух мизинчиковых батареек AA типа по 1.5 вольт каждая. В сумме получается 3 вольта, то что нужно устройству. Для удобной эксплуатации светильника батарейки вставляются в специальный для них отсек, который я приобрёл в радио магазине. Светодиод нужно использовать RGB с четырьмя выводами, общим выводом может быть как анод так и катод, от этого поменяется только подключение светодиода по схеме, плата и прошивка. Микроконтроллер Attiny13 можно использовать с любыми буквенными индексами, в любом корпусе (желательно в DIP чтобы подходил на плату). Для установки микроконтроллера используйте панель DIP-8, это позволит быстро и удобно извлечь микроконтроллер из платы в случае замены или прошивки.

Прототип RGB светильника на макетной плате с механическими контактами:

Сам светильник я реализовал на круглой печатной плате диаметром 5 см. Плата сделана по на стеклотекстолите, чтобы плату сделать абсолютно круглой я сначала её высверлил и обработал напильником по контуру окружности. Для наилучшего качества я рекомендую, сначала, перевести рисунок на квадратный кусок текстолита, протравить его в растворе хлорного железа или медного купороса и лишь потом, по контуру окружности рисунка, высверливать и подгонять, круглую плату. Рисунок печатной платы я делал в программе , исходные файлы платы вы можете найти ниже.

T13RGBA.LAY - Файл печатной платы светильника под светодиод с общим анодом
T13RGBK.LAY - Файл печатной платы светильника под светодиод с общим катодом

В качестве корпуса всего светильника я решил использовать маленький круглый цветочный горшочек, собственно под него и делалась печатная плата.

RGB светильник без корпуса (плата и отсек для батареек):

Для работы светильника нужно прошить микроконтроллер соответствующей прошивкой, для этого вам потребуется программатор AVR микроконтроллеров. Программатор можно использовать практически любой, главное чтобы он поддерживал ISP режим и микроконтроллер Attiny13. Я написал две версии прошивки, одна для светодиода с общим анодом, другая для светодиода с общим катодом. Файлы прошивки и исходники в среде вы можете найти ниже.

FWT13RGBA.HEX - Файл прошивки светильника под светодиод с общим анодом

FWT13RGBK.HEX - Файл прошивки светильника под светодиод с общим катодом

Не зависимо от файла, после прошивки нужно прошить соответствующие фьюз-биты указанные ниже.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATtiny13

1 Требуется прошивка В блокнот
HL1 RGB светодиод 1 В блокнот
R1-R3 Резистор 100 Ом 3 В блокнот
R4 Резистор 10 кОм 1 В блокнот
С1 Конденсатор электролитический 10 мкФ 1 В блокнот
С2 Конденсатор керамический 0.1 мкФ 1 В блокнот
Кнопка с фиксацией 1

Мы не раз рассматривали разнообразные светодиоды, строение, использование и т.д. и т.п. Сегодня я хотел бы остановиться на одной из разновидностей светодиодов (если так можно говорить) - RGB светодиодах.

Что такое RGB светодиод и устройство


Соединение RGB диодов с ШИМ Altmega8

Аноды RGB светодиода подключаем к линиям 1,2,3 порта В, катоды соединяем с минусом. Чтобы получить разнообразные палитры цвета на аноды будем подавать ШИМ сигнал в определенной последовательности. В этом примере мы специально используем программный ШИМ, хотя на Atmega8 можно без проблем получить аппаратный ШИМ на 3 канала. Программный ШИМ можно использовать в случаях нехватки таймеров/счетчиков и по другим причинам. Для генерации ШИМ определенной частоты используем прерывание по переполнению 8-ми битного таймера Т0(TIMER0_OVF_vect). Так как предделитель не используем частота переполнения таймера будет равна 31250Гц. А если переменная "pwm_counter" считает до 163, то частота ШИМ будет равна 190 Hz. В обработчике прерываний исходя из значений в переменных pwm_r, pwm_g, pwm_b переключаются ножки порта В. Цветовые эффекты настраиваются с помощью функций, где задается время свечения светодиода. В тестовой программе сначала загораются красный, зеленый, синий, белый цвета, а потом начинается цикл с переходами цвета.

Программный код:

// Управление RGB светодиодом. Программный ШИМ

#include

#include

volatile char pwm_counter,pwm_r,pwm_g,pwm_b;

// Прерывание по переполнению Т0

ISR (TIMER0_OVF_vect)

if (pwm_counter++ > 163)

pwm_counter = 0;

if (pwm_counter > pwm_r) PORTB |= (1 << PB1);

if (pwm_counter > pwm_g) PORTB |= (1 << PB2);

if (pwm_counter > pwm_b) PORTB |= (1 << PB3);

// Процедура задержки в микросекундах

void delay_us(unsigned char time_us)

{ register unsigned char i;

for (i = 0; i < time_us; i++) // 4 цикла

{ asm (" PUSH R0 "); // 2 цикла

asm (" POP R0 "); // 2 цикла

// 8 циклов = 1 us для 8MHz

// Процедура задержки в миллисекундах

void delay_ms(unsigned int time_ms)

{ register unsigned int i;

for (i = 0; i < time_ms; i++)

{ delay_us(250);

// Красный цвет

void red (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_r = 164 - a; //увеличение

for (char a = 0; a < 165; a++)

pwm_r = a; //уменьшение

// Зеленый цвет

void green (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_g = 164 - a;

for (char a = 0; a < 165; a++)

// Синий цвет

void blue (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

// Белый цвет

void white (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_r = 164 - a;

pwm_g = 164 - a;

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

// Переход цветa

void rgb (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

Светодиодные ленты давно применяются для местной подсветки и в качестве основного освещения. Но кроме монохромных (одноцветных) разных цветов есть управляемые ленты RGB (Blue, Green, Red), способные менять свой цвет. Одним из производителей таких устройств является компания Apeyron.

RGB технология

В самой схеме и работе многоцветной полоски есть ряд особенностей.

Отличия от обычной ленты

Как и обычная, RGB лента представляет собой печатную плату в виде узкой полосы, вдоль которой нанесены токопроводящие полоски. В отличие от стандартной, на ленте RGB таких полосок не 2, а 4 или 5 – общих и по одному для каждого цвета.

На плате методом SMM (Surface Mounted Mevice – прибор, монтируемый на поверхность) установлены резисторы и светодиоды, которые меняются в зависимости от типа ленты:

  • Монохромная. Могут быть любого размера и необходимого цвета.
  • RGB. В ней используются светодиоды SMD 5050. Этот диод состоит из трех светодиодов в одном корпусе. В монохромной ленте они одного цвета, в многоцветной – разного (красного, зеленого и синего). Такое сочетание позволяет менять цвет устройства или делать его белым. Черный цвет обеспечивает отсутствие света.
  • RGBW. Кроме цветных диодов, в ленте устанавливаются белые. Это дает дополнительные возможности по управлению яркостью и цветом света.

Кроме устройств, в которых управление всеми светодиодами одного цвета производится одновременно, есть приборы с чипованными диодами. В них находится микросхема, позволяющая управлять каждым светодиодом по отдельности. Это дает возможность реализовать эффекты типа «бегущие огни» или «звездный дождь».

Пример платы RGB ленты

Преимущества и способы применения

Преимуществом таких светодиодных устройств является возможность изменения цвета освещения, как вручную, так и по заранее заданной программе, а также организация разнообразных световых эффектов – переливов цвета, мерцания или, при подключении контроллера к компьютеру или музыкальному центру, светомузыки.

Такие устройства применяются в самых разных местах:

  • в подсветке витрин магазинов;
  • рекламные надписи;
  • создание романтической обстановки в комнате;
  • освещение коридора или спальни – ночью включается синий, а вечером или по сигналу датчика движения – яркий белый свет;
  • подсветка аквариумов.

Кроме этих вариантов возможно много других. Применение таких устройств ограничено только фантазией дизайнера.


Разноцветные ленты дают простор для возможностей дизайнеров

Выбор ленты

Один из вопросов, на который необходимо дать ответ при организации светодиодного освещения – какую полосу нужно использовать.

Степень освещенности

Прежде всего, нужно решить, в каком качестве будет использоваться светодиодная подсветка:

  • Декоративное освещение. Основное значение имеет функциональность контроллера.
  • Зонная подсветка. Это дополнительное освещение в комнате. Мощность его составляет лишь часть необходимой для всей комнаты.
  • Освещение рабочего места. Узнать требуемую мощность сложно, так как обычно используется вместе с основным освещением. Определяется методом подбора или при помощи онлайн-калькуляторов.
  • Основное освещение всего помещения. Мощность определяется по площади комнаты и ее назначению – в спальне принимается 2 Вт/м2, в кухне или детской – 3Вт /м2, а в самом ярко освещенном помещении – 3,5–4.

При составлении проекта учитываются потери света в рассеивателе или в потолочном плинтусе. Они достигают 50%. Возможен вариант двух зонной и многозональной подсветки.


Пример использования зонной подсветки. Такая лента не обеспечит освещение всей комнаты, но может подсветить нужную часть

Тип светодиода

В многоцветной полосе со светодиодами устанавливаются кристаллы SMD5050 размером 5*5 мм, состоящие из трех диодов и имеющие 6 выводов. В одноцветной ленте они одного цвета, а в полосе RGB – разного (красного, зеленого, синего). Рулон такой ленты длиной 5 метров и мощностью 144 Вт.

Кроме обычных диодов есть чипованные, WS2812B и WS2812S. Внешне они похожи на обычные, но внутри содержат ШИМ-контроллер, позволяющий управлять каждым светодиодом в отдельности. Они реализовывают разнообразные эффекты, типа «бегущие огни» или «звездный дождь». Из подобных устройств можно смонтировать LED-экран. Недостаток заключается в высокой цене и необходимости применения специального контроллера.

Плотность диодов

Яркость и цена светодиодной полосы зависит не только от размера и типа диодов. Не меньшее значение имеет плотность установки кристаллов. В ленте RGB она составляет 30–60 шт/м. Для большей яркости применяется двух, трех или четырехрядная с плотностью 120, 180, 240 шт/м соответственно.

Цвет ленты

Цвет RGB полосы регулируется яркостью светодиодов разного цвета. Если диоды включаются полностью, то лента излучает белый свет. При уменьшении яркости одного или двух цветов меняется общий цвет ленты. Это делается при помощи контроллера.


Контроллер позволяет регулировать яркость и цвет ленты

Светодиодная полоса RGB+WhiteRGBW – это двухрядная led-lenta, в которой один ряд выполнен из цветных, а второй из белых светодиодов. Это дает возможность получения пастельных цветов, а также повышенную яркость при обычном освещении.

Степень защиты IP

По уровню защиты от внешних условий устройства делятся от незащищенных (ip20, ip33) до защищенных частично (ip42, ip44) и герметичных (ip67, ip68).

Питание ленты RGB

Самый распространенный вольтаж этих устройств 12-24V. Встречаются приборы питанием 110 и даже 220V, но они мало распространены.

Выбор блока питания (драйвера) для полосы

БП для светодиодных лент выбирается по суммарной мощности устройств, которые будут к нему подключаться. Например, если соединяется 5 метров мощностью 14,4 Вт/м и 3 метра 7,2 Вт/м, то общая нагрузка составляет 14,4*5+7,2*3=93,6 Вт. Учитывая 20% запас (93,6+0,2х93,6=112,32) , мощность блока должна быть не меньше 112.32 Вт.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Важно! При подключении светодиодных приборов длинными кабелями, для того, чтобы избежать падения напряжения, используются провода большего сечения. Поэтому целесообразно взять вместо одного драйвера несколько и установить их возле места подключения.

Как и полосы, блоки питания производятся dc12-24v, а также 110 В.

Как управлять светом RGB ленты

Для управления яркостью одноцветной полосы нужен диммер, но для того, чтобы использовать все возможности многоцветных устройств, необходим контроллер. Иначе придется регулировать каждый цвет в отдельности, а световые эффекты будут недоступны.


Комплект контроллера RGB ленты

Выбор контроллера для RGB ленты

Подбор устройства управления зависит от трех факторов:

  • Мощность. Рассчитывается так же, как необходимая мощность БП – по общему количеству подключаемых устройств. Иногда, как при выборе БП, целесообразно приобрести не один мощный RGB-контроллер, а меньшей мощности и RGB-повторитель.
  • Желаемого набора функций. Видов управляющих устройств очень много, но, например, для подсветки товара в витрине или аквариума не нужен прибор с большим количеством световых эффектов, а для дополнительного освещения комнаты желательны включение по таймеру или светомузыка.
  • Дистанционное управление. Так же, как и при выборе функций, иногда это необходимо, а в других ситуациях это зря потраченные деньги.

При подборе эти моменты учитываются, чтобы не приобретать слишком дорогой прибор, и при этом его возможности были вполне достаточны.

Виды контроллеров

Контроллеры для управления светодиодными лентами RGB существуют разных типов: от самых простых, кнопочных, до оснащенных микропроцессорами и Wi-Fi.

Обычные устройства могут только выбрать определенный цвет и обеспечить несложные световые эффекты. Используются для подсветки витрин магазинов и других мест.

Более сложные модели можно программировать на изменение цвета и эффектов по таймеру. Они могут иметь разъем под flash-память и реагировать на освещенность в комнате и на улице. Существуют также bluetooth-контроллеры, с соответствующим пультом.

Самые сложные устройства могут подключаться к системе «умный дом».

Большинство полос имеют пульт дистанционного управления. Он бывает:

  • на кнопках;
  • инфракрасным;
  • на радиосигналах;
  • управление по Bluetooth;
  • управление по Wi-Fi.

Два последних могут заменить iPhone или мобильный телефон с Андроидом.


Управлять лентой можно с помощью смартфона

Кроме обычных контроллеров, есть самодельные устройства, работающие на основе микропроцессорной платы Ардуино. Такие самоделки управляют простыми или чиповаными светодиодами, создают световые или цветомузыкальные эффекты. К Arduino-controller также подключаются датчики движения или освещенности.

Режимы работы контроллера RGB

Светодиоды в лентах устанавливаются двух типов:

  • простые, управление которыми осуществляется изменением питающего напряжения одновременно по всей длине;
  • чипованные, с цифровым управлением цвета каждого диода в отдельности.

Соответственно, контроллеры работают в двух режимах — аналоговом и цифровом. Это разные типы устройств и они не взаимозаменяемые.

Способы подключения

Есть два варианта подключения ленты RGB:

  • пайка;
  • коннекторы.

Соединение пайкой

Для того чтобы припаять кабель к светодиодной полосе, необходимо:

  • Провод сечением до 0,5 мм2. Более толстый может оторвать контактные площадки.
  • Паяльник мощностью до 25 Вт. Мощный паяльник перегреет место пайки, и площадка отклеится от основания.
  • Припой и нейтральный флюс.
  • Термоусадочная трубка длиной 30 мм.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Внимание! Активный флюс использовать нельзя. Он разрушит провод или контактные полоски, а также приведет к КЗ, после чего ленту придется ремонтировать.

Коннекторы для светодиодной полосы RGB

Современный способ подключения – коннекторы. Это небольшие пластмассовые устройства, внутри которых контактные площадки для присоединения к ленте. Их количество должно соответствовать количеству токопроводящих полосок 2, 4 или 5.

Эти приборы выпускаются для различных вариантов подключения:

  • с выводами, для подачи питания;
  • соединительные, предназначенные для подключения двух отрезков полосы;
  • угловые, для соединения под углом;
  • в форме «Т» или крестообразные.

И многие другие. С помощью коннекторов можно произвести ремонт устройства своими руками.

Подключение к контроллеру RGB большей длины, чем его номинальная мощность

При управлении светодиодами мощностью, превышающей параметры контроллера, или при подключении устройств, расположенных на большом расстоянии, используется RGB-повторитель.

Сигнал на него поступает от контроллера по тонким кабелям, и устройство управляет свечением рядом расположенных отрезков ленты.

Видео обзор работы комплекта с пультом

📋 Пройдите тест и проверьте ваши знания


Светодиодная лента RGB или RGBW - осветительный прибор, состоящий из нескольких монохромных светодиодов, светящихся белым, красным, зеленым или синим цветами. Свое название она получила благодаря трем последним цветам - были взяты первые буквы их английского перевода (Red, Green, Blue - красный, зеленый и синий соответственно).

При ее прямом подключении к источнику постоянного тока с напряжением 12/24 В невозможно реализовать цветовые эффекты, ради которых такая лента и создавалась. Чтобы обеспечить разнообразие цветов и яркости, между источником питания и платой устанавливают специальный контроллер с приемником для управления пультом дистанционного управления (ПДУ). Этот приемник задает различные программы, по которым функционирует светодиодная лента RGB.

RGB-технология

Многоцветная лента была изобретена в ходе многочисленных научных работ, в рамках которых ученые пытались сформировать белое свечение светодиодов. Изначально для его получения использовались люминофорные диоды синего цвета со специальным белым покрытием. Позже в этих целях начали использовать ленту с тремя светодиодами - красным, зеленым и синим. Все три устанавливаются в одной ячейке, а испускаемый свет воспринимается человеком как белый - это и есть RGBW-технология.

Изменяя яркость того или иного светодиода, вы можете получать другие цвета и их оттенки. Число последних превышает несколько сотен тысяч. Это основное преимущество RGB-технологии над люминофорными светодиодными лентами.

Устройство

Конструктивно это гибкая печатная плата, к которой прикреплены светодиоды и резисторы, предназначенные для понижения тока. Выпускается разной ширины - от 5 до 30 мм. Наиболее востребованы LED-ленты с набором из шести выводов, в которых светодиоды собираются внутри единого корпуса.

Светодиоды классифицируются по типоразмерам. Самыми распространенными считаются SMD 5050 с габаритами 5х5 мм. Один погонный метр RGB-ленты может содержать около 30 светодиодов (изделие с двойной плотностью - 60). Мощность и световой поток зависят от числа диодов и их типоразмера.

Ленты различаются по степени защищенности (IP00 и т. д.). Чем ниже этот параметр, тем меньше вариантов применения осветительного прибора. К примеру, слабо защищенные приборы эксплуатируются исключительно в сухих помещениях, а изделия в силиконовой оболочке не страшатся даже полного погружения под воду (IP68).

Для размещения ленты на поверхностях с ее тыльной стороны крепится двусторонний скотч. Всегда можно разрезать ее на части, выбрав необходимую длину. Производители приборов самостоятельно отмечают пунктирными линиями места разрезов, там же изображен символ «ножниц». Перерезайте гибкую плату на этих участках, поскольку только здесь установлены контактные площадки для подключения к источнику питания с последующей спайкой или применением коннекторов.

Контроллер для RGB-ленты

Чтобы воспользоваться всеми возможностями RGB-ленты, подключите к схеме контроллеры, выполняющие ряд функций:

  • управление ПДУ;
  • изменение яркости LED-диодов;
  • изменение цвета свечения;
  • выбор режима - переключение частоты смены цветов и их переливания;
  • комбинация основных цветов с целью получения новых оттенков.

При выборе RGB-контроллера учитывайте два основных критерия - совместимость с подключаемой лентой и способ управления.

Такой контроллер может управляться:

  • через сеть Wi-Fi при помощи планшета или смартфона;
  • пультом ДУ с инфракрасными диодами;
  • без пульта (переключателем на стене).

Последний вариант актуален, если отсутствует необходимость в частом переключении режимов ленты.

Основной физический параметр, характеризующий RGB-контроллер, - его номинальная мощность. Для ее расчета возьмите формулу Mk = Ml*L*Km, где:

  • Mk - номинальная мощность контроллера;
  • L - длина отрезка в метрах;
  • Ml - мощность ленты в Вт/м;
  • Km - коэффициент мощности изделия.

Напряжение, необходимое для питания контроллера, должно быть таким же, как и у RGB-ленты.

Усилитель для RGB-ленты

Еще один элемент, используемый при подключении RGB-плат, - усилитель. Если длина ленты превышает пять метров, обойтись без него нельзя.

Изделие оснащено двумя клеммами - Input (входа) и Output (выхода), причем каждая из них имеет те же контактные площадки, что и сама лента - R, G, B и «+». Есть клеммы для подключения питания - «плюс» и «минус» (VDD и GND соответственно).

При достаточной мощности напряжение 12 или 24 В подается от дополнительного блока. Общие концы ленты подключите к клеммам Input на усилителе, после этого подсоедините клемму Output. В конце коннектится управляющий блок через плюсовую и минусовую клеммы VDD и GND. Очень важно соблюдать полярность, иначе диоды не будут светиться.

В итоге алгоритм соединения следующий: блок питания, контроллер, первый отрезок ленты, усилитель, второй отрезок. Управление такой электрической цепью осуществляется с помощью одного ПДУ.

В случае необходимости применения нескольких лент длиной от пяти метров и более к схеме подключаются вторые усилитель и блок управления. Наличие или отсутствие последнего определяется мощностью свечения. Строго запрещено параллельное соединение источников питания - только при помощи диодного моста.

Усилитель - громоздкий электротехнический элемент, поэтому не всегда хватает места для его удобного размещения. В случае необходимости его можно заменить на микромодель уменьшенной мощности (убедитесь, что ее достаточно для функционирования ленты).

Важно! Если мощность основного усилителя немного ниже требуемой для светодиодной ленты, докупите к комплекту микроусилитель и последовательно подключите к имеющемуся.

Блок питания

Светодиодные RGB-ленты функционируют от источников питания напряжением 12 или 24 В. При выборе блока управления обратите внимание на несколько важных физических условий:

  • напряжение и мощность блока должны соответствовать заявленным требованиям для RGB;
  • в зависимости от места монтажа прибор должен характеризоваться той или иной степенью влагозащищенности.

Важно! Если допустить ошибки при выборе, блок будет сильно перегреваться и спустя короткий промежуток времени выйдет из строя.

Есть несколько разновидностей блоков питания, которые можно найти на рынке:

  • с алюминиевым корпусом, высокой герметичностью и защитой от проникновения влаги, но высокой стоимостью;
  • мини-изделие в пластиковом корпусе, частично защищенном от влаги, по более низкой стоимости;
  • открытый блок, расположенный в перфорированном корпусе, характеризуется наибольшими габаритами и высокой мощностью, нуждается в дополнительных средствах защиты от влаги;
  • сетевой блок - средняя мощность.

Ознакомьтесь с инструкцией, которая прилагалась к RGB-ленте. Там указана мощность для одного погонного метра. Умножьте эту величину на длину гибкой платы, затем полученное значение увеличьте на 30 % (всегда должен быть запас мощности). В итоге узнаете мощность блока питания, необходимого для выбранной LED-ленты.

Популярные схемы подключения

Реализация любой схемы требует небольших знаний, в том числе и понимания, как правильно делить электротехническое изделие на части.

Стандартная схема подключения

Соблюдайте следующий порядок монтажа:

  1. Соедините контроллер с блоком питания через клеммы выходного (пониженного) напряжения.
  2. Плюсовые провода выделяют красным цветом, минусовые - черным.
  3. Подключите светодиодную ленту к контроллеру через три контактные площадки - R, G, B (управление тремя основными цветами) и VDD (плюс).

Вариант подключения двух светодиодных лент

Если требуется питание одновременно двух светодиодных лент, учтите следующие моменты:

  • понадобятся два блока питания и два усилителя для RGB;
  • соблюдайте порядок подключения провода в соответствии с цветовой маркировкой;
  • схема пригодна для подачи тока на отрезки плат, длина которых достигает 10 метров.

Основное правило: если в схему подключаются не менее двух лент, обеспечивается их параллельное соединение (последовательное уменьшит мощность напряжения для светодиодов, расположенных на дальних концах от источника питания и усилителя).

Подключение RGB-ленты длиной в 20 метров

При выборе мощного блока питания можно использовать схему подключения «контроллер-усилитель-блок». Во всех остальных случаях требуются два и более блока.

Пошаговая инструкция по монтажу

При самостоятельном подключении цветной RGB-ленты требуется четкое соблюдение алгоритма:

  1. Поиск места установки и подготовка поверхности. Для начала определитесь с местом установки, а затем выровняйте поверхность, к которой будет крепиться светодиодная лента. Ею может быть потолок, дверь и т. д. Обязательно обезжирьте ее с помощью любого растворителя, иначе двусторонний скотч спустя короткий промежуток времени отойдет. При креплении к металлическим поверхностям требуется дополнительная электрическая изоляция.
  2. Большинство светодиодных RGB-лент самоклеющиеся - снимите с тыльной стороны защитную пленку и аккуратно прижмите изделие к поверхности выбранного места. При выполнении изгибов их радиус должен быть не более 20 мм, в противном случае могут возникнуть неполадки. Разрезайте ленту в строго обозначенных местах. При соединении разных частей пользуйтесь специальными коннекторами или паяльником (подробнее об этом рассказано в отдельной статье).
  3. Подключение электрической цепи. Выберите схему соединения светодиодной ленты из предложенных выше. Объедините изделие с контроллером, усилителем и блоком питания. Последний включите в сеть при помощи электрической вилки. Черный провод блока соедините с клеммой V- на усилителе, красный - V+. Провода светодиодной ленты объедините с контактными площадками контроллера в соответствии с их цветом и обозначением: красный - R, зеленый - G, синий - B. Последний провод подключается к плюсовой клемме - V+.
  4. Подсветка работает от сети 220 В. Проверьте ее работоспособность при помощи пульта ДУ.

Правильные подключение и эксплуатация светодиодной RGB-ленты позволят создать неповторимую атмосферу дома, украсить офисные или жилые помещения, уличную беседку. Наличие тех или иных электротехнических изделий в выбранных схемах зависит от длины платы, количества и типоразмера используемых LED-диодов.

Светящиеся только красным - R , зеленым - G , синим - B или белым - CW цветом, как правило, подключаются непосредственно к источнику постоянного тока напряжением 12 В или 24 В. R G B светодиодную ленту, как и монохромные, тоже можно подключить к блоку питания постоянного тока, соединив выводы R , G и B между собой.

Но в таком случае будет упущена возможность реализации цветовых эффектов освещения, ради которых лента и была создана. Поэтому при установке цветных светодиодных лент, в разрыв цепи между блоком питания и лентой обычно устанавливают электронный контроллер. Он позволяет в автоматическом режиме изменять цвет и яркость свечения ленты в динамическом режиме по заданной с пульта дистанционного управления программе.

На фотографии изображена электрическая схема подключения R G B светодиодной ленты к сети 220 В. Блок питания (адаптер) преобразует переменное напряжение 220 В в напряжение постоянного тока 12 В, которое по двум проводам с соблюдением полярности подается на R G B контроллер. К контроллеру посредством четырех проводов в соответствии с маркировкой подключается светодиодная лента. Для удобства монтажа и ремонта светодиодного освещения узлы между собой соединяются с помощью разъемов.

Электрическая схема LED R G B светодиода SMD-5050

Для подключения, а тем более ремонта R G B светодиодной ленты на профессиональном уровне, необходимо представлять, как она устроена, и знать электрическую схему и распиновку применяемых в лентах светодиодов. На фотографии ниже представлен фрагмент R G B светодиодной ленты с нанесенной схемой распайки кристаллов светодиодов.

Как видно на схеме, кристаллы в светодиоде электрически не связаны между собой. Три разноцветных кристалла в одном корпусе светодиода образуют триаду. Благодаря такой конструкции, управляя яркостью свечения каждого кристалла индивидуально можно получить бесконечное количество цветов свечения светодиода. На таком принципе управления цветом построены дисплеи сотовых телефонов, навигаторов, фотоаппаратов, компьютерных мониторов, телевизоров и многих других изделий.

Технические характеристики светодиода SMD-5050 приведены на странице сайта «Справочник по SMD светодиодам» .

Электрическая схема LED R G B ленты на светодиодах SMD-5050

Разобравшись с устройством светодиода легко разобраться и с устройством светодиодной ленты. В верхней части картинки фотография работоспособного отрезка LED R G B ленты, а в нижней его электрическая схема.


Как видно из схемы, одноименные контактные площадки светодиодной ленты, находящиеся с ее правой и левой стороны электрически соединены между собой напрямую. Таким образом, обеспечивается возможность подачи питающего напряжения на ленту с любого конца и на следующий отрезок ленты при ее наращивании.

Кристаллы светодиодов VD1, VD2 и VD3 одинакового цвета свечения соединены последовательно. Для ограничения тока в каждой из цветовых цепей установлены токоограничивающие резисторы. Два из них номиналом 150 Ом, а один 300 Ом, в цепи кристаллов красного цвета. Резистор большего номинала установлен для выравнивания яркости всех цветов с учетом интенсивности излучения кристаллом светодиода и не одинаковой цветовой чувствительности человеческого глаза к разным цветам.

Как разрезать светодиодную ленту на отрезки

Как Вы уже наверно поняли, R G B светодиодная лента любой длины (относиться и к монохромным лентам), состоит из коротких самостоятельных отрезков, представляющих собой законченное изделие. Достаточно подать на контактные площадки напряжение питания и лента будет излучать свет. Для получения отрезка ленты требуемой длины элементарные отрезки соединяют между собой в соответствии с буквенной маркировкой.

Обычно лента выпускается длиной пять метров. В случае необходимости ее можно укоротить, разрезав поперек по линии, нанесенной по центру контактных площадок между маркировкой, бывает, в этом месте дополнительно наносят символическое изображение ножниц. Иногда ленту приходится разрезать, чтобы установить под углом. В таком случае разрезанные одноименные контактные площадки соединяются между собой с помощью пайки отрезками провода .

Способы управления цветом свечения
R G B светодиодных лент

Есть два способа управления цветовым режимом работы R G B светодиодной ленты, с помощью трех выключателей или электронного устройства.

Принцип работы простейшего контроллера на выключателях

Рассмотрим принцип работы самого простого контроллера, на механических выключателях. В качестве выключателя для ручного управления свечением R G B ленты можно применить трех клавишный настенный выключатель, предназначенный для включения люстр и светильников в бытовую сеть 220 В. Электрическая схема подключения тогда будет иметь следующий вид.


Резисторы R1-R3 служат для ограничения тока и их можно устанавливать в любом месте цепи питания кристаллов одного цвета. По этой схеме можно подключать R G B ленты, рассчитанные на напряжение питания как 12 В, так и 24 В.

Как видно из схемы, плюсовой вывод блока питания подключается непосредственно к плюсовому выводу светодиодной ленты, который является общий для светодиодов всех цветов, а минусовой вывод подключается к R , G и B контактам ленты через выключатель. Коммутатором из трех выключателей можно получить семь цветов свечения ленты. Это самый простой, надежный и дешевый способ управления цветами свечения R G B ленты.

Принцип работы электронного контроллера

Для получения бесконечного количества цветов свечения R G B ленты и в автоматическом режиме динамическое изменение величины светового потока, вместо выключателей используют электрический блок, который называется R G B контроллер. Его включают в разрыв цепи между блоком питания и R G B лентой. Обычно в комплект контроллера входит пульт дистанционного управления, позволяющий на расстоянии управлять режимом его работы, и как следствие режимом свечения светодиодной ленты.

Так как для работы светодиодной ленты требуется, как правило, напряжение постоянного тока 12 В (реже 24 В), то для подключения ее к электросети переменного тока 220 В применяется блок питания или адаптер, преобразующий переменное напряжение в напряжение постоянного тока, которое через разъемное соединение подается на блок контроллера.


Рассмотрим принцип работы RGB контроллера на примере самого простого и широко применяемого контроллера модели LN-IR24. Он состоит из трех функциональных узлов – контроллера управления R G B , силовых ключей и микросхемы инфракрасного сенсора (ИК). Микросхема контроллера прошита на требуемый алгоритм работы светодиодной ленты. Управление микросхемой контроллера осуществляется сигналом, поступающим с микросхемы сенсора ИК. На ИК сенсор управляющий сигнал поступает при нажатии кнопок на пульте дистанционного управления.

Управление подачей питающего напряжения на светодиодную ленту осуществляется с помощью трех полевых транзисторов, работающих в ключевом режиме. При поступлении сигнала с микросхемы контроллера управления RGB на затвор транзистора, его переход сток-исток открывается, и через светодиоды начинает протекать ток, в результате чего они начинают излучать свет. Управление яркостью свечения светодиодов осуществляется за счет высокочастотного изменения ширины импульсов подаваемого питающего напряжения (широтно-импульсной модуляции).

Выбор блока питания и контроллера для R G B ленты

Блок питания для RGB светодиодной ленты, необходимо выбирать, исходя из напряжения ее питания и потребляемого тока. Наиболее популярны светодиодные ленты на напряжение постоянного тока 12 В. Ток потребления по цепям R, G и B можно узнать из этикетки или определить самостоятельно, воспользовавшись справочными данными на светодиоды, изложенными в таблице на странице сайта Справочная таблица параметров популярных SMD светодиодов . Принято мощность потребления ленты указывать на метр ее длины.

Рассмотрим на примере как определить мощность потребления RGB ленты неизвестного типа на напряжение питания 12 В. Например, нужно подобрать блок питания и контроллер для R G B ленты длиной 5 м. Первое что необходимо сделать, определить тип RGB светодиодов установленных на ленте. Для этого достаточно измерять размер боковых сторон светодиода. Допустим, получилось 5 мм×5 мм. По таблице определяем, что такой размер имеет светодиод типа LED-RGB-SMD5050. Далее нужно подсчитать количество корпусов светодиодов на метре длины. Допустим, получилось 30 штук.

Один кристалл светодиода потребляет ток 0,02 А, в одном корпусе размещено три кристалла, следовательно суммарный ток потребления одного светодиода составит 0,06 А. На одном метре длины 30 светодиодов, умножаем ток на количество 0,06 А×30=1,8 А. Но диоды включены по три последовательно, значит, реальный ток потребления метра ленты будет в три раза меньше, то есть 0,6 А. Длина нашей ленты пять метров, следовательно, суммарный ток потребления составит 0,6 А×5 м=3 А.

Расчеты показали, что для питания R G B ленты длиной пять метров нужен блок питания или сетевой адаптер с выходным напряжением постоянного тока 12 В и током нагрузки не менее 3 А. Блок питания должен иметь запас по току, поэтому был выбран, адаптер модели АРО12-5075UV, рассчитанный на ток нагрузки до 5 А. При выборе блока питания нужно учесть, что выходной его разъем должен подходить к разъему R G B контроллера.

При выборе контроллера надо учесть, что ток потребления по отдельно взятому каналу R , G или B будет в три раза меньше. Следовательно, для нашего случая нужно брать контроллер, рассчитанный на напряжение 12 В и максимально допустимым током нагрузки на канал не менее 3 А/3=1 А.

Этим требованиям соответствует, например, R G B контроллер LN-IR24B. Он рассчитан на ток нагрузки до 2 А (можно подключить до 10 метров RGB ленты). Позволяет включать и выключать ленту, выбирать 16 статических цветов и 6 динамических режимов дистанционно, с расстояния до восьми метров, с помощью элегантного пульта ДУ. Питающее напряжение на контроллер подается с блока питания или сетевого адаптера с помощью коаксиального DC Jack. R G B -контроллер LN-IR24B имеет малый вес и габаритные размеры.


Внешний вид подготовленного по результатам расчета комплекта для освещения светодиодной лентой показан на фотографии. В комплект входит блок питания модели АРО12-5075UV, R G B контроллер LN-IR24B с пультом дистанционного управления и R G B светодиодная лента.


Если потребуется подключить несколько пятиметровых R G B лент, то потребуется более мощный контроллер, например, CT305R, позволяющий выдавать ток до 5 А на светодиоды одного цвета. Этим контроллером можно управлять не только с помощью пульта дистанционного управления, но и по сети с компьютера, превратив тем самым R G B освещение в цветомузыкальное сопровождение при прослушивании музыки.

Соединять последовательно светодиодные ленты длиной более пяти метров недопустимо, так как токоведущие дорожки самой ленты имеют малое сечение. Такое подключение приведет к снижению светового потока на участке ленты, превышающего длину пять метров. Если нужно подключить несколько пятиметровых светодиодных лент, то проводники каждой из них подключаются непосредственно к контроллеру.

В мощных моделях контроллеров для подключения внешних устройств используются клеммные колодки, в которых провода зажимаются с помощью винта. Рядом с клеммами обязательно нанесена маркировка. INPUT (IN) означает вход, к этим клеммам подключается внешний блок питания, с которого подается питающее напряжение для самого контроллера и светодиодных лент. Полярность обозначена дополнительными знаками «+» и «-». Несоблюдение полярности при подключении блока питания может вывести контроллер из строя.

Группа клемм для подключения R G B ленты обозначена надписью OUTPUT (OUT) и означает выход. Цвета обозначены буквами R (красный), G (зеленый), B (синий) и V+ (это общий провод любого другого цвета). От ленты обычно идут тоже цветные провода и достаточно просто присоединить их цвет в цвет.

Замечу, что к любому R G B контроллеру, соответствующему по току, можно с успехом подключить монохромную светодиодную ленту . Тогда появится возможность с помощью пульта дистанционного управления менять режим ее свечения – включать, выключать, менять яркость, устанавливать динамический режим изменения яркости.